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ABSTRACT 

 

An abstract of the dissertation of Susan Loucette Price for the Doctor of Philosophy in 

Computer Science presented March 7, 2008. 

 

Title: Semantic Components: A Model for Enhancing Retrieval of Domain- 

 Specific Information 

 

Despite the success of general Internet search engines, information retrieval 

remains an incompletely solved problem.  Our research focuses on supporting domain 

experts when they search domain-specific libraries to satisfy targeted information 

needs.  The semantic components model introduces a schema specific to a particular 

document collection.  A semantic component schema consists of a two-level 

hierarchy, document classes and semantic components.  A document class represents a 

document grouping, such as topic type or document purpose.  A semantic component 

is a characteristic type of information that occurs in a particular document class and 

represents an important aspect of the document’s main topic.  Semantic component 

indexing identifies the location and extent of semantic component instances within a 

document and can supplement traditional full text and keyword indexing techniques.  

Semantic component searching allows a user to refine a topical search by indicating a 

preference for documents containing specific semantic components or by indicating 

terms that should appear in specific semantic components. 
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We investigate four aspects of semantic components in this research.  First, we 

describe lessons learned from using two methods for developing schemas in two 

domains.  Second, we demonstrate use of semantic components to express domain-

specific concepts and relationships by mapping a published taxonomy of questions 

asked by family practice physicians to the semantic component schemas for two 

document collections about medical care.  Third, we report the results of a user study, 

showing that manual semantic component indexing is comparable to manual keyword 

indexing with respect to time and perceived difficulty and suggesting that semantic 

component indexing may be more accurate and consistent than manual keyword 

indexing.  Fourth, we report the results of an interactive searching study, 

demonstrating the ability of semantic components to enhance search results compared 

to a baseline system without semantic components. 

In addition, we contribute a formal description of the semantic components model, 

a prototype implementation of semantic component indexing software, and a prototype 

implementation adding semantic components to an existing commercial search engine.  

Finally, we analyze metrics for evaluating instances of semantic component indexing 

and keyword indexing and illustrate use of a session-based metric for evaluating 

multiple-query search sessions. 
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Chapter 1    Introduction 

 

Retrieving information from online resources is an increasingly prevalent task, 

supporting many work-related activities.  So much information is available that even 

an expert cannot know, and remember, all the knowledge accumulated in his area of 

expertise.  With billions of pages available on the Web as static HTML pages, and an 

untold number potentially available as dynamically generated web pages in response 

to database queries, the cliché information overload understates the problem. 

Furthermore, web technologies make it easy for anyone to make information available 

to others.  Although the ease of providing information allows a variety of information 

types and opinions to be accessible, the diversity of information sources also creates 

new challenges.  A searcher must sift through search results, deciding which 

documents are relevant to his need while evaluating the quality and authority of the 

information as well. 

Despite the enormous success of general search engines, such as Google™, 

information retrieval (IR) remains an incompletely solved problem.  Search queries 

are typically incomplete representations of the searcher’s underlying information need 

and the matching algorithms used by search engines rely on incomplete 

representations of the semantic content of documents (what the document content 

means).  As a result, search engines sometimes return many unwanted documents and 

fail to return documents containing the desired information at, or near, the top of the 

search results. 
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Choosing how and where to search for information is an important strategy for 

coping with the challenges presented by the high quantity of information and the 

prevalence of low quality information.  One can search the entire Web, relying on a 

general purpose search engine to return documents ranked not only by relevance to the 

query but also by factors that reflect its authority and popularity.  One can also choose 

a portal devoted to a specific domain (“a sphere of activity, concern, or function; a 

field” [1]).  The contents of the portal might have been manually curated, with 

documents being selected only if they meet some criteria for quality.  Or, documents 

might have been included because the contents, or the sequence of links that led to 

finding the page, met automated criteria that suggested the page is relevant to the 

domain.  In either case, the universe of possible pages to be returned is more limited 

than for a general search engine, possibly decreasing the likelihood of the portal 

returning completely irrelevant results.  However, limiting the size and nature of the 

document collection can also inhibit the effectiveness of link-based algorithms that are 

used so successfully by general search engines.  Sometimes the information task itself 

dictates a particular information resource, such as an employer’s intranet.  The 

resource chosen by a particular searcher for a particular task may depend on prior 

knowledge about the topic of the information need, about the candidate resources, 

about the ease of searching or browsing each candidate resource, about the relative 

authoritativeness of a resource, about the intended audience or presentation style of 

candidate resources, or it may depend on other personal preferences. 
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We are primarily interested in those cases when a searcher chooses a domain-

specific document collection instead of using a general search engine to search the 

entire Web.  The research described in this dissertation is motivated by the desire to 

support domain experts when they are using domain-specific digital libraries to satisfy 

certain kinds of information needs.  Each of these stipulations has implications for the 

scope of, and approach taken in, this work. 

 

1.1. Domain-specific Digital Libraries 

The term “digital library” has been used in myriad ways.  Gonçalves and 

colleagues [2] defined a formal model for digital libraries that they call the 5S model, 

where the five S’s are: Streams, Structures, Spaces, Scenarios, and Societies.  Their 

informal definition affords a useful summary: “Informally, a digital library involves a 

managed collection of information with associated services involving communities 

where information is stored in digital formats and accessible over a network.  

Information in digital libraries is manifest in terms of digital objects, which can 

contain textual or multimedia content (e.g., images, audio, video), and metadata. … 

Basic services provided by digital libraries are indexing, searching, and browsing.”  In 

summary, digital libraries involve collections of documents (possibly accompanied by 

metadata, i.e., data about the documents, that may be descriptive or structural), users 

(community), and services (indexing, searching and browsing).  In this work, we 

interpret the term digital library broadly to include publicly available web portals, 

specialized collections that are accessible electronically but that have access restricted 
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to members of an organization or holders of a subscription, and enterprise information 

portals that may provide access to either externally available documents produced by 

an organization (extranet), internally available documents (intranet), or both. 

By a domain-specific digital library, we mean a digital library that pertains to a 

particular area of knowledge or activity (a domain).  A domain-specific library has a 

collection of documents, which are pertinent to a particular domain, and a retrieval 

system that provides access to those documents.  While the library may provide 

browsing services in addition to searching services, this work focuses only on the 

searching capabilities.  The retrieval system typically has an index, consisting of a 

representation for each document, a query module that accepts user requests in a query 

language that is understood by the retrieval system, a search module that matches the 

user requests to document representations, and an interface to present the retrieved 

documents, usually in ranked order, to the user.  Document representations typically 

consist either of words extracted from the document (full text indexing), keywords 

assigned from a controlled vocabulary appropriate to the domain (keyword indexing), 

or a combination of both.  Figure 1.1 shows a schematic of a digital library retrieval 

system. 

Fagin and colleagues  [3] studied corporate intranets (which they also called the 

workplace web).  A corporate intranet is not necessarily a domain-specific digital 

library, since there may be more emphasis on documents related to the corporation 

itself (such as personnel directories and corporate policies) rather than about the 

domain in which its activities occur.  However, their analysis is useful for  
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Figure 1.1 Schematic of a digital library retrieval system 
 
 
understanding some of the challenges posed by domain-specific digital libraries.  The 

authors observed four characteristics, which they posited as axioms, that distinguish 

corporate intranets from the Internet at large: (1) “Intranet documents are often created 

for simple dissemination of information, rather than to attract and hold the attention of 
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any specific group of users;” (2) “A large fraction of queries tend to have a small set 

of correct answers (often unique), and the unique answer pages do not usually have 

any special characteristics;” (3) “Intranets are essentially spam-free;” and (4) “Large 

portions of intranets are not search-engine friendly”. 

Fagin’s axioms, intended to explain several characteristics of intranets that affect 

intranet searching, are generally true of domain-specific digital libraries as well.  

Hubs, which are web pages that contain links to various useful pages about a particular 

topic [4], may be uncommon or absent.  As a result, the link-based algorithms that are 

so effective for general web search are not very useful for searching intranets and may 

also be ineffective for domain-specific digital libraries.  The lack of redundant content 

places additional pressure on retrieval algorithms.  If any one of many relevant pages 

will satisfy the user, then the search engine need only return one of the pages at a high 

rank to be successful.  If only a particular page will suffice, then the demand for 

accuracy is much higher.  On the other hand, there is less need in intranet retrieval 

systems for defensive algorithms that can detect efforts to manipulate search engine 

rankings.  For example, information in metadata tags can be useful for intranet 

searching — and for searching domain-specific digital libraries — whereas metadata 

tags are generally ignored by Internet search engines because metadata tags have been 

so often abused on the Web.  Fagin’s final axiom reflects the diversity of document 

types and formats present in corporate environments and the prevalence of 

dynamically generated content resulting from database queries.  If a large proportion 

of corporate information is stored in database records, instead of being stored in a 
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document repository, the information is not available for indexing by the search 

engine.  Although developing crawlers that automatically find web pages with 

searchable forms and developing applications to automatically fill out such forms are 

areas of active research, most information in online databases remains “hidden” from 

search engines.  The technical challenges presented by the different document formats 

and access methods may occur in some domain-specific digital libraries as well, but 

these challenges are largely orthogonal to issues surrounding the content in the 

documents.  The fundamental implication of these axioms is that current web 

searching techniques employed by the major search engines may not be adequate for 

successful retrieval from domain-specific digital libraries.  

 

1.2. Information Needs 

The information needs of domain experts, and their information seeking behavior, 

are affected by many factors: task, context, urgency of the problem, time constraints, 

level of domain expertise, amount of prior knowledge related to the particular need, 

and the information goal (such as learning about a topic vs. finding facts or 

instructions) [5-7].  Two groups of professionals whose information needs have been 

studied, physicians and engineers, provide illustrative examples regarding the types of 

information needs that experts encounter and some of the constraints imposed by the 

workplace settings in which the needs occur.   

In a review of the literature on the information needs of physicians, Gorman 

commented on a sample of typical questions asked by primary care physicians during 
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routine office practice.  He noted that “although some of these questions are fairly 

simple and direct, many of them are complex, multidimensional questions embedded 

in the context of the individual patients.”  One of the sample questions was “In a 

woman with history of delivering at 33 weeks, now having Braxton-Hicks 

contractions at 32 weeks, on terbutaline and bedrest, in breech position, is c-section 

indicated if labor cannot be stopped?” [6].  Clearly the question is complex and there 

are multiple details about a particular patient situation embedded in the question.  A 

certain degree of domain knowledge is needed to even understand why various 

elements are included in the question and what constraints they impose on the clinical 

situation and on the desired answer. 

Ely and colleagues [8, 9] developed two taxonomies of clinical questions collected 

during observational studies of family practice physicians.  One taxonomy was by 

topic, the other taxonomy was by generic questions, which abstract the entity types 

and relationship types in the question.  Examples of generic questions are “What is the 

cause of symptom X?” and “Should I use treatment Y for condition X?”  The most 

common generic question types were about the cause of a particular symptom, about 

the proper dose for a particular drug, and about how to manage a particular disease or 

finding.  That the specific questions asked by physicians could be abstracted into 

generic questions suggests that many questions share a relatively small set of entity 

types (such as disease, drug, symptom, and therapy) that are connected by a finite and 

predictable set of relationship types (such as causes, treats, and prevents). 
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Freund et al. [5] studied contextual influences on the information behavior of 

software engineering consultants and developed a model with four spheres: the 

consultant, the consulting engagement, the work task, and the problem situation.  

Work tasks had two dimensions: the high-level task in a consulting engagement (such 

as project management, training, mentoring, and technical support) and the technical 

task (such as design, implementation, configuration, and integration).  The problem 

situation determines not only the topic but also the information goal.  The typical 

information goals they identified were: learn about, collect advice to make a decision, 

find instructions, find facts, and find examples to reuse. All of the information goals 

except learn about are specific, targeted goals closely tied to a particular context and 

task. 

From these examples, we conclude that some of the information searching tasks of 

domain experts require targeted information.  These are searching tasks in which the 

information need is specific, often motivated by a particular work task or situation.  

The information need is likely to be satisfied by one, or a few, documents that provide 

the answer to a relatively well-defined question.  The tasks are precision-oriented, 

meaning that search precision (exclusion of irrelevant documents from a search result) 

is more valuable than recall (return of all relevant documents somewhere in the search 

result).1  While domain experts can have some information tasks that are recall-

                                                 
 
 
1 In search systems with ranked results, rather than set-based results, ranking relevant documents higher 
than irrelevant documents is functionally equivalent to excluding irrelevant documents.  Evaluation, 
therefore, measures the quality of the ranking instead of precision and recall. 
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oriented, for which it is important to find all relevant documents, and some tasks that 

are open-ended, for which iterative, exploratory searching is necessary and for which 

finding serendipitous information is highly valuable, in this work we focus on 

supporting precision-oriented information tasks. 

It is clear that, for both of these groups of domain-experts — and probably for 

experts in other domains as well — relevance is situational [10].  That is, what 

constitutes a relevant document for a particular information need is determined largely 

by features of the searcher’s internal (cognitive) situation and by features of the 

external situation in which the information need occurs.  For a document to be 

relevant, it may need to provide the answer to a specific question, or cover a particular 

aspect of a topic, not just be about the general topic of the search.  Physicians need 

documents that fill gaps in their knowledge and that can provide information that is 

applicable to a given patient, who may have multiple characteristics that influence the 

decision being made.  Engineers need documents that provide information that will 

help a particular individual complete a particular task in a particular context. 

Another characteristic of experts’ information needs is that experts have far more 

information needs than they have time to pursue.  Time constraints force them to make 

decisions about which information needs to pursue and which resources to search.  

We, again, note examples from medicine and engineering. 

Based on a review of the literature, Gorman estimated that physicians have two 

questions for every three patients [7, 11].  Only about 30% of these questions are 

immediately answered [7, 8, 11] despite a plethora of electronic and nonelectronic 
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medical knowledge resources.  The two factors that Gorman found to be significant 

predictors of whether physicians would actively seek answers to questions were belief 

that a definitive answer exists and the urgency of the patient’s problem [7].  Curley et 

al. studied physicians’ selection of knowledge resources in the context of patient care 

using a cost-benefit framework.  They found that the significant variables affecting 

resource selection, which were availability, searchability, understandability, and 

clinical applicability, were all related to the cost of finding useful information.  

Characteristics of resources that can result in information having greater benefit, such 

as extensiveness and credibility, did not affect resource use [12].   

Similar findings are available in studies of engineers.  Freund et al. studied 

software engineers who reported spending about 20-30% of their time looking for and 

consulting information sources.  They quoted one participant who indicated that the 

time would have been greater if they could spare more time [5].  Fidel and Green used 

interviews to study how engineers select information sources.  The most common 

factors were related to accessibility (sources I know, saves time, is physically close, 

has the right format, can give the right level of details, is accessible, is available) and 

quality (can give data that meets the needs of the project, is most likely to have the 

information needed, is reliable). 

In summary, experts have many information needs and limited time to pursue 

them, which affects their choices of which information needs to pursue and which 

resources to consult.  Their information needs are often specific, are often shaped by 
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the workplace context in which they occur, and often entail predictable types of 

information. 

 

1.3. Domain Experts as Information Seekers 

In a classic article, Belkin et al. put forth the anomalous state of knowledge (ASK) 

hypothesis, suggesting that “an information need arises from a recognized anomaly in 

the user’s state of knowledge concerning some topic or situation and that, in general, 

the user is unable to specify precisely what is needed to resolve that anomaly” [13].  

We posit that the ASK hypothesis is often false for domain-expert searchers.  An 

expert in a domain is likely to have a mental framework for understanding what kinds 

of information she needs, to understand how entities that are important in the domain 

usually relate to each other, and to know what kind of information will satisfy a 

particular information need.  An expert in a domain is also likely to be familiar with 

the types of documents often created in the domain, and the types of documents that 

can be found in various resources, such as a particular digital library. 

Domain experts often have extensive knowledge about how information in the 

domain is typically organized and expressed within documents.  This claim is 

supported by observations in multiple domains.  Dillon [14] showed that experienced 

researchers have a mental model of typical academic articles.  When given pieces of 

cut up articles, with approximately every other paragraph removed, experimental 

subjects rapidly assembled the fragments into an order that followed an Introduction-

Method-Result-Discussion format.   In related work, Bishop [15] described a series of 
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focus groups, interviews, and usability tests investigating how academic researchers 

use structural components of scientific journal articles (such as figures, tables, 

references, author lists, methods sections) to select which documents to use, to read 

and comprehend the documents, and to extract, transform and use the information in 

their own work.  During a usability study of an experimental digital library system for 

forest management, the investigators observed that the forestry professionals exhibited 

a striking familiarity with the organization of long documents, rapidly homing in on 

sections of interest [16].  When physicians were tasked with a scenario of 

familiarizing themselves with the medical record of a patient for whom they were to 

assume responsibility, the physicians rapidly focused attention on the relevant portions 

of the relevant documents in the medical record, attending only to information that 

would influence the scenario [17]. 

 

1.4. Semantic Components 

We believe that the location of words in relation to the logical structure and 

semantic organization of documents can provide useful data that can inform the 

retrieval and ranking of documents in IR systems.  Most IR systems use the words in 

documents (usually by calculating the frequency of occurrence of each word in a 

document and in the document collection as a whole) or keywords (usually chosen 

from a controlled indexing vocabulary) to represent document content.  Queries are 

represented similarly, as a collection of words appearing in a natural language query, 

as keywords from an indexing vocabulary, or as a combination of both.  When IR 
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systems match the text words or keywords that represent the documents and queries, 

the list of documents they retrieve is sometime unsatisfactory because these 

representations are only weak surrogates for the actual document content and 

information needs.  The user wants the IR system to match the underlying intent of 

queries to the semantic content of documents, which is a more difficult problem than 

term matching.  Consider, for example, a physician who must decide whether to 

administer a vaccine that prevents polio to a patient with a respiratory infection.  

(Many vaccines should not be given in the presence of a current illness.)  The query 

“polio prevention respiratory infection” will return documents about polio, about polio 

causing respiratory failure, about polio causing symptoms of an upper respiratory 

infection, about respiratory infections, about preventing polio, and about preventing 

upper respiratory infections, in addition to possibly returning documents about 

preventing polio in the presence of a respiratory infection.   

In this dissertation we introduce a model we call Semantic Components that takes 

one step toward using additional semantics to improve the matching of queries to 

documents.  We supplement existing representations of document content by 

exploiting domain-specific characteristics of document types and content.  Semantic 

components provide a richer representation of document content than full text or 

keyword indexing techniques.  The representation occurs at a subdocument level, 

providing additional information about where various kinds of information are located 

in a document.  Semantic components also allow use of an extended query language to 

capture additional detail about the information need.   
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The semantic components model has two main elements: document classes and 

semantic components.  Documents are classified by grouping documents that will tend 

to contain the same kinds of information.  Different domains and document collections 

can have different axes that are most appropriate for classifying documents, such as 

topic type or document purpose.  In health-related collections, we have found topic 

type to be useful.  For example, such collections often have documents about diseases 

(one document class) and documents about medications (another document class).  

Documents within a class tend to contain characteristic types of information, usually 

information about important aspects of the main topic of the document.  For example, 

in the medical domain, documents about diseases often contain information about 

diagnosis and treatment whereas documents about medications often contain 

information about dosage and side effects. We call these types of information semantic 

components.  We call the set of document classes and associated sets of semantic 

components that are identified for a particular document collection a semantic 

component schema.  Table 1.1 shows part of a semantic component schema (with two 

document classes and their semantic components) for the document collection that we 

used for the searching study that is described in Chapter 8. 

A semantic component instance is the text in a document that contains information 

about an aspect of the main topic (a subtopic) that is the semantic component.  

Semantic component instances may or may not correspond to structural elements in 

documents, can overlap with other instances, and may consist of discontiguous 

segments of text.  Any given text in a document can belong to zero, one, or multiple 
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semantic component instances.  A semantic component is the type (that is, a label that 

indicates the type) for a semantic component instance that corresponds to a particular 

aspect.  For example, in a document about a particular disease, a text segment that 

describes the diagnosis of the disease is an instance (or part of an instance) of the 

diagnosis semantic component.  A segment that describes the treatment of the disease 

is an instance (or part of an instance) of the treatment semantic component. 

 
Table 1.1 Partial semantic component schema used in a searching study 

Document Class Semantic Components 

Clinical problem 
 

General information 
Diagnosis and evaluation 
Referral 
Treatment 

Drugs 

General information 
Practical information 
Target group 
Effect 
Side effects, interactions and contraindications 

 

Figure 1.2 shows instances of two semantic components, epidemiology and 

etiology (causation), highlighted in a document about asthma (in a class of documents 

about diseases) that has been excerpted and highly condensed from a web page.2   

Note that each semantic component instance consists of two discontiguous segments, 

that the instances do not correspond to the document structure, and that the semantic 

component names do not correspond to the words used in document subheadings. 

We use semantic components for information retrieval in three ways: 

  

                                                 
 
 
2 Based on condensed excerpts from http:// www.emedicinehealth.com/asthma/article_em.htm 
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Figure 1.2. Two semantic component instances 
 

1. We allow a searcher to refine a search by searching for one or more query 

terms within a specific semantic component in addition to searching for terms 

in whole documents.  A query might consist of the topical term “asthma” plus 

a request for documents that contain the term “pregnancy” within a treatment 

semantic component instance.  A searcher can also specify query terms (the  

 
 
ASTHMA 
 
Asthma Overview 
Asthma is a disease that affects the breathing passages of the lungs (bronchioles). Asthma is caused by 
chronic (ongoing, long-term) inflammation of these passages.  When the inflammation is "triggered" by any 
number of external and internal factors, the passages swell and fill with mucus. Muscles within the breathing 
passages contract (bronchospasm), causing even further narrowing of the airways. This narrowing … 

Like any other chronic disease, asthma is a condition you live with every day of your life. You can have an 
attack any time you are exposed to one of your triggers. Asthma cannot be cured, but it can be controlled.  
With proper treatment, people with asthma can have fewer and less severe attacks. Without treatment … 

Asthma is a very common disease in the United States, where more than 17 million people are affected. A 
third of these are children. In 2002, 478,000 hospitalizations and 4,657 deaths were attributed to asthma. 

• Asthma affects all races and is slightly more common in African Americans than in other races.  
• Asthma affects all ages, although it is more common in younger people. The frequency and severity of 

asthma attacks tend to decrease as a person ages.  
 
Asthma Causes 

We do not know exactly what causes asthma. What all people with asthma have in common is chronic 
airway inflammation and excessive airway sensitivity to various triggers ...  Each person with asthma has his 
or her own unique set of triggers. Most triggers cause attacks in some people with asthma and not in others. 
Common triggers of asthma attacks are the following: 
• Exposure to tobacco or wood smoke  
• Breathing polluted air  
• Inhaling other respiratory irritants such as perfumes or cleaning products  
• Breathing in allergy-causing substances (allergens) such as molds, dust, or animal dander  
• An upper respiratory infection, such as a cold, flu, sinusitis, or bronchitis  
 
Risk factors for developing asthma 
• Hay fever (allergic rhinitis) and other allergies - The single biggest risk factor  
• Eczema - Another type of allergy affecting the skin  
• Genetic predisposition - A parent, brother, or sister also has asthma 

Asthma Symptoms 

When the breathing passages become irritated or infected, an attack is triggered. The attack may come on 
suddenly or slowly over several days or hours. The main symptoms that signal an attack are as follows: 
Wheezing; Breathlessness; Chest tightness; Coughing 

Etiology 

Epidemiology 

Epidemiology 

Etiology 

Disease
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same terms or different terms) to be searched for within multiple semantic 

components.  

2. We allow a searcher to specify a preference for documents containing 

particular semantic components without searching for a specific query term 

within a component.  In this case, a query could consist of the topical term 

“asthma” and a preference for documents that contain a treatment semantic 

component. 

3. We display a list of the semantic components present in each document in a hit 

list (the list of documents returned by the search engine) plus an indication of 

the size of each component to provide a short synopsis of the document that 

can help a searcher decide whether a particular document is likely to be useful.  

For example, a search might return one document about asthma with a 

diagnosis component consisting of 400 words and a treatment component with 

100 words and a second document with only a treatment component that 

consists of 500 words.  A searcher interested in asthma treatment might choose 

to look at the second document first because it appears to contain more 

information about treatment. 

The semantic components model leverages an expert’s knowledge about 

information organization in a domain, allowing him to use characteristics of the 

domain and of document classes to create a richer representation of his information 

need than a list of search terms.  The semantic components model also allows a richer 

representation of the content and semantic structure of documents.  These enhanced 
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representations offer search engines an opportunity to more accurately match 

documents to information needs. 

This dissertation provides a detailed description and analysis of the semantic 

components model.  It also reports the results of a series of investigations into the 

potential usefulness of semantic components for retrieval in domain-specific digital 

libraries.  We studied manual identification of semantic component instances in 

documents in this work; automating the identification of semantic components 

instances is an important topic for future work. 

 

1.5. Domains, Settings, and Collaborations Involved in this Research 

The goal of this research is to support users with domain-specific tasks, so it was 

important to study the semantic components model in the context of specific domains.  

The two domains in which most of this work is focused are (1) medicine and (2) 

public land management.  The reasons for choosing these two domains are largely 

pragmatic.  Most of the research reported in this dissertation was done in the medical 

domain, for the following reasons: 

• The author is a physician as well as a computer scientist, so the medical 

domain is a natural setting for exploring these ideas. 

• The medical domain is often used for information retrieval and information 

science research because of the rich terminological resources and bibliographic 

databases that are available.  This work builds on a long history of research in 

the medical domain. 
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• The research was largely funded by a National Science Foundation (NSF) 

grant from the International Digital Government program.3,4   Our government 

partner was sundhed.dk, the national Danish health portal [18] (see below).   

• Much of the preliminary work was funded by a National Library of Medicine 

postdoctoral research fellowship.5 

Some of the early work described in this dissertation also builds on the work of 

previous graduate students, Shawn Bowers and Mathew Weaver.  Both students built 

applications to support informational activities of public land managers from the U.S. 

Department of Agriculture (U.S.D.A.) Forest Service [19, 20].  In the process of 

gathering requirements and designing the applications, they learned much about the 

domain, about documents produced as part of the land management process, and about 

the work tasks and information flow of forest supervisors and other land managers.  

The semantic components model was, in part, inspired by the Schematics Browser 

[19] and therefore public land management was a natural domain for initial 

exploration and testing of these ideas. 

Sundhed.dk6 is a web-based portal that provides access to information about health 

and medicine and about the Danish healthcare system.  Intended for both healthcare 

professionals and citizens in Denmark, it has been operational since 2001.  As of July 

                                                 
 
 
3 Accelerated Indexing in a Domain-Specific Digital Library  (NSF award 0514238) 
4 Some of the work was also funded by a grant to study the use of superimposed information for 
education in a digital library (NSF award 0511050) and by a grant to develop generic mechanisms for 
capturing and using superimposed information (NSF award 0534762). 
5 National Library of Medicine Training Grant 5-T15-LM07088 
6 “sundhed” can be translated as “health.” 
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2006, sundhed.dk hosted nearly 25,000 of its own documents and also provided links 

to a variety of external sources.  Sundhed.dk generously provided help in 

understanding its organization and editorial processes, donated considerable employee 

time, and provided access to both its documents and to a configuration file that 

specifies many parameters for its search engine. 

The research reported in this dissertation would not have been possible without a 

number of essential collaborators who provided resources, gave feedback, recruited 

study participants, facilitated arrangements for the user studies, and contributed to our 

understanding of the domains and settings that served as sources for both inspiration 

and testing of the ideas underlying this work.  In addition, the research has been 

greatly enriched by exchanging ideas with a number of people, but especially with 

Lois Delcambre, Professor of Computer Science at Portland State University, and 

Marianne Lykke Nielsen, Associate Professor at the Danmarks Biblioteksskole (Royal 

School of Library and Information Science) in Denmark. 

The following paragraphs are intended to credit various individuals who played a 

significant role in the conduct of the research described in this dissertation.7  Although 

the descriptions cannot quantify the value or the amount of work contributed by each 

individual, this should at least make it clear that it was a joint effort to produce this 

research. 

                                                 
 
 
7 The contributions of my advisor, Dr. Delcambre, are not specifically mentioned because she was 
involved in every stage of the research. 
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Dr. Marianne Lykke Nielsen.  The indexing and searching studies described in 

Chapters 7 and 8 were a joint effort with Dr. Nielsen and would not have been 

possible without her contributions.  Dr. Nielsen initiated and facilitated the 

collaboration with sundhed.dk, and also with Drs. Peter Vedsted and Jens Rubak.  She 

arranged for our research license for the use of the Ultraseek software from Frans la 

Cour of Ensight (now Metier).  She also initiated our collaboration with Dr. Kalervo 

Järvelin.  She proposed the initial designs for the indexing and searching studies (such 

as number of participants, duration of each subject’s participation, number of 

documents to be indexed, and number of searchers).  The preliminary interviews with 

indexers and users of sundhed.dk were conducted by Dr. Nielsen and the author, but 

primarily by Dr. Nielsen because the participants, who were all Danish, found it easier 

to converse in Danish than in English.  Development of the semantic component 

schemas used in the indexing and searching studies was a joint process between Dr. 

Nielsen and the author.  Dr. Nielsen provided valuable advice and pointers to the 

information science literature, especially regarding keyword indexing and the user-

centered approach to IR.  She coordinated the Danish indexers who performed 

semantic component indexing for the documents we used in the searching study.  She 

also facilitated the local arrangements for the indexing and searching studies that were 

both held in Denmark.  She provided valuable feedback regarding drafts of the 

questionnaires and did formal pilot testing of the materials we used in the studies.  

Establishing the requirements for the experimental search system and carrying out the 

indexing and searching studies was a team effort by Dr. Nielsen, Dr. Delcambre, and 
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the author.  In addition, Dr. Nielsen recognized the importance of analyzing the 

sequences of queries issued by the searchers and is leading work that will be published 

elsewhere to analyze the refinements that searchers made when their initial queries 

were unsuccessful. 

Vibeke Luk.  Ms. Luk was our primary contact at sundhed.dk and provided 

support at every stage of this research.  She helped us understand how the web portal 

is organized and how the indexing and searching processes are implemented.  She 

arranged for our access to the documents and configuration files.  She also assisted 

with local arrangements for each of our studies.  In addition, she recruited the 

participants in our indexing study and the indexers who indexed documents for the 

searching study.  She also participated in the indexing study as a subject and indexed 

some of the documents for the searching study. 

Dr. Peter Vedsted.  Dr. Vedsted is a family physician and researcher at The 

Research Unit for General Practice at the University of Århus in Denmark.  He was 

also a key developer of praxis.dk, a predecessor to sundhed.dk.  Dr. Vedsted provided 

useful feedback about the semantic components model early in the research, obtained 

funding from the regional government in Århus to support physician participation in 

the searching study, helped design the scenarios we used in the searching study, 

developed the reference standard of relevance judgments for the searching study, and 

helped recruit physicians to participate in the searching study. 

Dr. Jens Rubak.  Dr. Rubak, also of praxis.dk and a family physician in Århus, 

recruited physicians to participate in the searching study. 



www.manaraa.com

 

24

Dr. Kalervo Järvelin.  Dr. Järvelin is Academy Professor in the Department of 

Information Studies at the University of Tampere in Finland.  Dr. Järvelin collaborated 

with us to develop a new session-based metric, sDCG, for evaluating IR systems in 

interactive searching studies.  We discuss sDCG, and describe how we used it as one 

method for assessing search results, in Chapter 8. 

Dr. Timothy Tolle.  Dr. Tolle, recently retired from the USDA Forest Service, 

provided valuable assistance in understanding the work tasks of forestry professionals 

and the processes and documents mandated by the National Environmental Protection 

Act (NEPA).  He, along with Dr. Nielsen, provided valuable feedback regarding early 

ideas that led to the semantic components model.  Dr. Tolle also developed semantic 

components to describe Environmental Analysis and Decision Notice documents as 

part of our early studies. 

 

1.6. Contributions 

The contributions of this dissertation are: 

1. An informal and a formal description of the semantic components model 

2. A prototype implementation of semantic component indexing software, which 

we used to perform semantic component indexing for the searching study 

3. A discussion of how we developed semantic component schemas to describe 

document collections using document classes and semantic components 
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4. An analysis of using the semantic components model to express the 

information needs represented in a published taxonomy of clinical medical 

questions 

5. An evaluation framework for assessing the accuracy and consistency of 

semantic component indexing and keyword indexing 

6. An indexing study that compared keyword indexing and semantic component 

indexing by participants who were experienced with keyword indexing for 

similar documents 

7. A searching study in which domain experts completed realistic search 

scenarios using an interface that allowed searching with semantic components 

and a comparison interface that mimicked an existing retrieval system to 

search a familiar domain-specific digital library  

8. A prototype implementation of a search system that uses semantic components 

and that we employed in the interactive searching study 

We now detail the specific research efforts led by the author.8  She led the 

development and elaboration of the semantic components model (which resulted from 

discussions and key feedback from Drs. Nielsen, Delcambre, and Tolle in response to 

her earlier ideas) and she formalized the semantic components model (Chapter 3).  She 

also conducted the initial document sampling and analyses of the sundhed.dk 

documents, led the development of the initial semantic component schema for 

                                                 
 
 
8 “led” is the most appropriate description because nearly every significant research activity involved 
some amount of input and collaboration by members of the research team. 



www.manaraa.com

 

26

sundhed.dk (with input from Dr. Nielsen), developed the semantic component schema 

for UpToDate® documents, and analyzed the evolutions of these schemas over time 

(Chapter 4).  She performed the mappings from the information needs taxonomy to the 

semantic component schemas (Chapter 5).  She developed the indexing evaluation 

framework, including the analyses of candidate evaluation metrics, with input from 

Dr. Nielsen about evaluation of keyword indexing (Chapter 6).  She led the application 

for approval of the indexing and searching studies by the Human Subjects Research 

Review Committee at Portland State University and development of the questionnaires 

for the indexing and searching studies.  She designed and implemented programs to 

select and prioritize documents to be indexed for the searching study (based on queries 

that she and Dr. Nielsen issued to produce the initial lists of documents), and designed 

and implemented the semantic component indexing software (Chapters 7 and 8).  She 

performed the technical design and implementation of the experimental searching 

system (on top of the Ultraseek search engine being used by sundhed.dk) that was 

used in the searching study (Chapter 8).  She also designed and implemented the data 

analyses reported in the dissertation.  In particular, she designed and implemented the 

analysis of the effect of document selection for semantic component indexing on the 

searching study results and the overall approach to handling the data from the 

interactive searching experiment, which resulted in the recognition of the need for a 

metric to compare system performance in multiple query sessions (Chapters 7 and 8). 

The remainder of the dissertation is organized as follows.  Chapter 2 of this 

dissertation contains an introduction to information retrieval and related areas of 
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research to provide general background to the dissertation.  Chapter 3 provides a more 

detailed introduction to semantic components, including an introduction to semantic 

component indexing that is facilitated by a description of the prototype indexing 

software and a formal description of the model.  Chapter 3 also includes a detailed 

overview of the research presented in subsequent chapters.  The discussion of 

semantic component schemas, including how we developed the schemas to describe 

document collections and the lessons we learned from iterative refinements to those 

schemas, is presented in Chapter 4.  Our study of using semantic components to 

express information needs in a taxonomy of clinical questions is described in Chapter 

5.  In Chapter 6 we develop the evaluation framework for assessing semantic 

component and keyword indexing.  In Chapter 7 we present the study of semantic 

component and keyword indexing and use the evaluation framework developed in 

Chapter 6 to analyze the results of the study.  In Chapter 8 we describe the interactive 

searching study and analyze the results.  We also describe the prototype 

implementation of a search system using semantic components, which was an 

essential component of the experimental searching system used by the study 

participants.  In Chapter 9 we present our conclusions and discuss areas for future 

work. 
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Chapter 2    Background and Related Work 

  

We begin this chapter with a brief introduction to information retrieval systems.  

The semantic components model builds on concepts from information retrieval 

research and is intended to supplement, not replace, existing information retrieval 

techniques.  We then describe some areas of existing work that use techniques similar 

to the semantic components model.  We also describe some work that uses different 

methods intended to achieve the same goal, that is, incorporating additional semantic 

and domain-specific information into retrieval systems.  We discuss additional related 

work in later chapters when that work relates more specifically to the research 

presented in a single chapter. 

 

2.1. Introduction to Information Retrieval Systems 

Information retrieval (IR) systems return documents in response to queries that 

express an information need.9  The retrieved documents can be full text documents or 

bibliographic records that describe the full text documents.  A typical IR system 

consists of components that: 

• interact with the user to accept queries and return search results 

• match documents to queries 

                                                 
 
 
9 Although information retrieval systems for multimedia objects exist as well, this dissertation focuses 
on information retrieval systems for text. 
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• create and store concise representations of each document to facilitate 

matching documents to queries (an index) 

• store the documents that are returned to the user as search results (which might 

be abstracts instead of the complete documents) 

In relational database systems, queries precisely specify the records that the system 

should return.  In contrast, the queries in IR systems only approximate the user’s 

actual information need, which may depend on such things as the user’s situation, pre-

existing knowledge, and depth of interest.  Similarly, document representations stored 

in the IR system’s index are incomplete indications of the information each document 

contains.  As a result, IR systems typically fail to retrieve all potentially relevant 

documents and often retrieve many documents that are not relevant to the user’s 

information need.  Methods that retrieve more of the relevant documents (increase 

recall) generally also retrieve more nonrelevant documents (decrease precision). 

 

2.1.1. Indexing 

Indexing consists of creating a representation for a document that can be stored 

and retrieved in electronic form.  Creating document representations can be done 

manually or automatically.  Manual indexing is usually performed by a trained indexer 

and involves assigning a small number of keywords (single words or phrases) to 

describe what a document is about.  We refer to indexing with keywords as keyword 

indexing.  In most cases, keywords are chosen from a restricted set of words or phrases 

called a controlled vocabulary.  Automatic indexing usually consists of recording each 
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word in the document, the frequency of the word’s occurrence in the document, and 

the position of each occurrence.  We refer to this type of indexing as full text  

indexing.  

 Some words, such as “the”, “on”, and “in”, occur in so many documents that they 

may not be useful for distinguishing the content of one document from the content of 

other documents.  Most automatic indexing systems have a list of such words, called 

stopwords, that they ignore in the indexing process.  The type of indexing, either 

keyword or full text, is orthogonal to the method, either manual or automatic.  In 

practice, however, manual indexing systems usually produce keyword indexes and 

automated indexing systems usually produce full text indexes.  Some automated 

keyword indexing systems exist, although they are often used as computerized 

assistants to manual indexers. 

The entire collection of text words or keywords used to index all the documents in 

a collection is referred to as the indexing language.  We will refer to text words (and 

phrases, for IR systems that extract phrases as well as individual words) or keywords10 

used for indexing as terms.  Terms, especially keywords, are also sometimes called 

descriptors.  A concept is a mental model of an object or an idea that is represented by 

one or more terms.  Two important characteristics of indexing that can affect the 

retrieval process are exhaustivity and specificity.  Exhaustivity is the degree to which 

indexing represents all the concepts that appear in a document.  Specificity is the level 

                                                 
 
 
10 A keyword can consist of a single word, a phrase, or multiple words connected with punctuation 
symbols to represent a single concept 
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of abstraction at which a concept is represented.  For example, if a document is about 

dogs, the concept dog could be indexed using “dog,” “mammal,” or “pet.”  The term 

“dog” is more specific than either “mammal” or “pet”.  More exhaustive indexing 

means that a document can be retrieved in response to a greater variety of queries, 

which can be either an advantage or a disadvantage.  Higher specificity usually results 

in fewer instances of returning unwanted documents, but can sometimes result in 

failure to retrieve desired documents. 

Extensive discussions of the theory and practice of keyword indexing, and of the 

relative advantages and disadvantages of keyword versus full text indexing, are 

available elsewhere [21-27].  Here we summarize salient points and note that many 

modern information retrieval systems use a combination of keyword and full text 

indexing. 

Keyword indexes are more compact than full text indexes, which include all the 

words in a document.  When computational resources were more limited than they are 

now, storing keywords and comparing query terms to sets of keywords was 

computationally more feasible than using all the words in a document.  Also, the use 

of a controlled vocabulary allows concepts to be represented by one agreed-upon term, 

instead of being represented by the multiple different words that can be used in natural 

language.  Hierarchical controlled vocabularies that contain broader term/narrower 

term relationships allow the searcher to expand and narrow the focus of a search as 

needed.  However, human intellectual keyword indexing is expensive and prone to 

inconsistency [28].  The indexer must not only determine what the document is about, 
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and translate the concepts into terms, but he must also anticipate which terms might be 

used by searchers wanting to find the document [24].  Also, existing vocabularies can 

fail to adequately represent either the documents’ contents or the users’ information 

needs.  Poor representation can occur either because the scope of the vocabulary is 

inadequate or because the vocabulary is outdated.  The lower exhaustivity of keyword 

indexing compared to full text indexing, which was an advantage when computing 

power was limited, can be a disadvantage for searchers whose interest may be about 

concepts less central to the document, or that were not deemed important by the 

indexer. 

Automated full text indexing is less expensive than manual keyword indexing.  

Full text indexing is also more exhaustive than keyword indexing because it attempts 

to represent all of the content of a document, not just the main concepts.  The 

vocabulary used for full text indexing is always up to date because it mirrors the 

vocabulary used by the document author.  However, full text indexing requires the 

searcher to anticipate the language used by the author in relevant documents.  The 

burden is on the searcher to be familiar with any specialized terminology and to 

consider synonyms and terms at broader and narrower degrees of specificity [21, 24].  

Mismatch in the use of inflexional variants by author and searcher, such as different 

verb tenses, can also cause retrieval failures.  Some automated indexing systems use 

stemming, the conflation of variants by reducing them to a common stem, to reduce 

such mismatches.  Stemming can be very effective, such as by conflating “rains” and 

“raining” to “rain,” but algorithms are imperfect.  For example, the Porter stemming 
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algorithm [29] fails to conflate some variants (such as “mouse” and “mice”) and 

conflates some words with different meanings to the same stem (such as “dais” and 

“days” to “dai”). 

 

2.1.2. Queries 

A query is the expression of a user’s information need that is input to the IR 

system.  Some systems accept queries expressed in natural language, typically treating 

the query as a set (or a list or a bag) of words.  Other systems accept queries expressed 

as clauses connected with Boolean operators (such as AND, OR, and NOT).  

Additional refinements include restricting the search to specific bibliographic fields 

(such as title or author), searching for phrases instead of words, or using proximity 

operators that require query words to occur within a specified interval of words.  Some 

modern systems use a combination of operators.  The queries allowed by an IR system 

are expressed in its query language. 

 

2.1.3. Retrieval 

When an IR system receives a query, it searches its stored indexes for matches 

between the query representation and document representations.  For a Boolean query, 

the matching algorithm is set based.  All retrieved documents satisfy exactly the 

constraints indicated by the query.  For example, the Boolean query “cat AND 

platypus” would retrieve a document only if the indexing data for that document 

contained the term “cat” and the term “platypus.”  The Boolean query “cat OR 
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platypus” would return any document whose indexing data contained either the term 

“cat” or the term “platypus.”  For natural language queries, a similarity algorithm that 

allows partial matching retrieves and orders documents based on a measure of 

similarity between the query and each document.  Similarity algorithms are often 

based on the vector space model [30], in which documents and queries are represented 

by weighted vectors.  Each element in the vector represents a term in the document (or 

query) that is weighted according to the term’s frequency in the document (or query) 

and its frequency in the entire collection.  Similarity can be calculated as the cosine of 

the angle between two vectors.  For example, the ranking of documents in response to 

the query “cat platypus” would be determined by the number of times the words “cat” 

and “platypus” appeared in each document and by the relative frequency of “cat” and 

“platypus” in the entire document collection.  Newer models for ranked retrieval that 

have gained considerable popularity are the probabilistic model [31, 32] and language 

models [33].  Although the probabilistic model and language models are based on 

different mathematical theories than the vector space model, both models also use 

word frequencies to rank documents in response to queries. 

Some IR systems, especially web search engines, use content-independent features 

in addition to similarity between document and query to rank candidate documents.  

Two well-known algorithms that use the hyperlink structure of the Web to estimate the 

relative popularity and authority of web pages are the page-rank algorithm [34] and 

the hypertext-induced topic selection (HITS) algorithm [4].  The words in anchor text 

(the text in the clickable link on web pages) and in URLs have been found to be quite 
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useful as an indicator of document content [35].  In other words, if document A 

contains the text “everything you want to know about cats” in the anchor text for a 

hyperlink to document B, and the URL for document C is 

“http://www.animals.com/cats,” then an IR system might boost the rankings of 

documents B and C in the results for the query “cats.” 

 

2.1.4. Evaluation 

Evaluation of IR systems is a complex topic; here we briefly summarize prominent 

issues that are related to the research presented in this dissertation.  Historically, the 

most common approach to IR system evaluation is the use of experimental test 

collections, sometimes referred to as the Cranfield paradigm in reference to early 

experimental evaluations at Cranfield University [36].  Test collections have three 

components:  documents, statements of information need, and relevance judgments 

that indicate which documents are relevant to each information need.  Voorhees notes 

three simplifying assumptions in the Cranfield paradigm: (1) “... relevance can be 

approximated by topical similarity” (2) “... a single set of judgments for a topic is 

representative of the user population” and (3) “ ... the lists of relevant documents for 

each topic is complete (all relevant documents are known)” [37].  She also notes that 

these assumptions are usually violated.  Relevance is more complex than just topical 

similarity and user populations are diverse.  Except in the smallest test collections, 

determining the relevance of every document is not feasible.  However, despite 

widespread awareness of the limitations of the Cranfield paradigm, researchers 
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continue to find it useful for evaluating IR systems.  The Cranfield approach has some 

potent advantages over alternative approaches.  By keeping all other elements the 

same, a change to a single component can be evaluated in relative isolation from the 

other parts of the system [37].  Furthermore, test collections are reusable, allowing 

many experimenters to profit from the effort invested in creating a single test 

collection. 

The most well-known examples of experiments using the Cranfield paradigm are 

the annual Text REtrieval Conferences (TREC) that are sponsored by the National 

Institute of Standards and Technology (NIST) [38, 39].  Participating research groups, 

from both academia and industry, can choose to work on one or more of the tasks that 

are available in the different tracks that run in a given year.  All of the tracks run on an 

annual cycle that involves distribution of document collections and topics 

(descriptions of information needs) pertinent to each task.  NIST provides the 

infrastructure needed for creating large scale test collections, particularly the 

organization of thousands of expert relevance judgments, and sponsors an annual 

conference where participating research groups compare and discuss their results.  

Most of the document collections used in TREC contain millions of documents and so 

only a fraction of the documents are judged for relevance.  Documents are chosen to 

undergo human relevance assessment using the technique of pooling.  The pool of 

documents to be judged is formed from the top X documents (where often X = 100) in 

the ranked results submitted by each participating research group for a given query.  

Because of overlaps in the documents returned by different groups, a pool is usually 
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only about one third as large as the theoretical maximum size of the pool (number of 

groups * X).  For most of the TREC experiments, the relevance judgments are binary 

and pertain only to whether a document addresses the subject of the given topic.  

Voorhees states “the assessors are told to assume that they are writing a report on the 

subject of the topic statement.  If they would use any information contained in the 

document in the report, then the (entire) document should be marked relevant, 

otherwise it should be marked irrelevant” [39]. 

In the Cranfield paradigm, the output of an IR system can be evaluated using a 

variety of metrics.  The choice of metrics depends on characteristics of the IR system, 

characteristics of the test collection, and the goals of the evaluation.  When the output 

is a set of documents that match a Boolean query, the most commonly used metrics 

are recall and precision, where 

 

(1)

 
and 

 

(2)

 
 

When the output is a ranked set of documents, as is usually the case for natural 

language queries (or any non Boolean query), metrics that assess the quality of 

ranking are more appropriate than set-based recall or precision.  One method to 

evaluate ranked results is to calculate values for precision at standard levels of recall, 

plotting precision as a function of recall either with or without interpolation between 

relevantdocumentsofnumber
relevantandretrieveddocumentsofnumberrecall =

retrieveddocumentsofnumber
relevantandretrieveddocumentsofnumberprecision =
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known values.  Another method to evaluate ranked results is to calculate a single 

summary value that can be averaged over a set of queries to reflect system 

performance and to facilitate comparisons between systems.  We briefly introduce five 

popular metrics: precision@X, Mean Average Precision, Reciprocal Rank, bpref, and 

Normalized Discounted Cumulated Gain (and the related cumulated-gain metrics).   

Precision@X is the precision value for only the top X documents in a ranked 

output where X is a variable chosen by the evaluator, such as 1, 5, 10, or 20.  In other 

words,  

precision@X = num of top X documents that are relevant / X (3)

 

The advantages of precision@X (also referred to as precision at document cutoff 

values) are that it is easy to calculate, its interpretation is intuitive, and it reflects the 

well-known phenomenon that searchers rarely look beyond the first few pages of 

ranked search-engine output.  The disadvantage of precision@X is that it does not 

average well across a set of queries because it fails to account for variability among 

queries with respect to the number of relevant documents.  Suppose an IR system 

returns one relevant document among the top ten documents for each of two queries.  

And, suppose that the first query has no other relevant documents, but the second 

query has twenty relevant documents.  The precision@10 is 0.1 for both queries, but 

common sense indicates that the system has performed much better for the first query 

than for the second query. 
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Average Precision (AP) is a measure of the “goodness” of the ranking for a single 

query and reflects both precision and recall for the entire list of ranked results.  To 

calculate AP one first calculates the precision@r for the rank at which each relevant 

document r is returned, and then averages the values that are obtained.  For relevant 

documents that are not returned in the query results, precision is 0.  Therefore, 

 

 

(4)

 

where R is the set of relevant documents for the query, r is a relevant document, 

precision@r is the precision achieved at the rank of r, and precision@r = 0 if r was not 

retrieved.11  To illustrate average precision, consider a query for which four relevant 

documents are known to exist and the system returns three of them, ranked 1, 4, and 5.  

The average precision is calculated as (1/1 + 2/4 + 3/5 + 0)/4 = 0.525.  After the first 

relevant document is retrieved, the precision is 1.0.  After the third relevant document 

is retrieved, 3 of 5 documents are relevant, so the precision is 0.6.  An ideal average 

precision is 1.0, meaning that all n relevant documents are retrieved and appear in the 

first n positions in the ranked list.  Mean average precision (MAP) is the average of 

the AP values for a set of queries (such as the queries in a test collection).  MAP is one 

of the most commonly used metrics in IR evaluation and has been found to be “stable 

and discriminating” in a study of IR evaluation measures [41].  A disadvantage is that 

                                                 
 
 
11 This formula for AP is the one used by TREC.  It is slightly different from Average Precision at Seen 
Relevant Documents [40], which ignores the failure to retrieve known relevant documents. 
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it lacks an analogue in real-life experience and therefore the values it yields are not 

intuitive to interpret. 

Reciprocal Rank (RR) is the precision achieved when the first relevant document is 

returned, that is RR = 1/rankd where rankd is the rank at which the system returned the 

first relevant document.  Although of limited usefulness for evaluating the full range 

of IR system capabilities, reciprocal rank can be useful if one is interested in how well 

the first relevant document is ranked.  When there is only one relevant document for a 

query, reciprocal rank is equivalent to average precision. 

The use of pooling means that relevance judgments are incomplete, which could 

affect the assessment of various experimental IR systems.  The bpref metric was 

introduced as an alternative that does not rely on the assumption of complete relevance 

judgments [42] and has become popular for evaluating experiments using the TREC 

collections.  Bpref is calculated as: 

 

 

(5)

 
where R is the number of judged relevant documents, N is the number of judged 

nonrelevant documents, r is a (judged) relevant retrieved document, and n is a member 

of the set of the first R (judged) nonrelevant retrieved documents.  Bpref has been 

shown to correlate well with MAP when complete relevance judgments are available 

and to be more robust than MAP when relevance judgments are incomplete.  However 

bpref does require that nonrelevant documents have as much chance of being 

∑ −= r NR
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R
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explicitly judged as relevant documents [42].  Although this assumption holds for the 

TREC methodology, it may not be valid in other types of experiments. 

Normalized Discounted Cumulated Gain (nDCG) is one of four related metrics 

that were introduced by Järvelin and Kekäläinen for evaluating ranked output when 

relevance judgments are graded instead of binary [43].  The four cumulated gain 

metrics are most easily described together.  For all four metrics, the initial step is to 

assign a value for each of the graded relevance scores (such as 0, 1, 2, 3 or 0, 1, 10, 

100 for a scale with four levels of relevance).  The simplest of the metrics is 

Cumulated Gain (CG).  CG is calculated by summing the values for the relevance 

scores of each document in the order at which they were returned by the system: 

 
where CG[i] is the cumulated gain at the ith document and G[j] is the value assigned 

to the relevance score given to the jth.  One can write the CG values as a vector or plot 

them on a graph to compare the CG performance of two systems on the same query 

(or to compare average CG performance for a set of queries).  One can also compare 

the CG values at any document cutoff value.  Discounted Cumulated Gain (DCG) is 

similar to CG except that it also applies a discounting function to each document so 

that documents returned earlier (higher on a results list) are valued more than 

documents returned later (lower on the results list).  Discounting reflects the 

assumption that relevant documents appearing earlier in the results are more valuable 

to the searcher than relevant documents appearing later.  The discounting function 

uses a logarithmic function in which the logarithm base is a variable set by the 

                    (6) ∑ == i
j jGiCG 1 ][][
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evaluator.  The original formula for DCG (equation 7) only discounted documents 

retrieved at a rank lower than the value chosen for the logarithm base.  Thus, if the 

logarithm base were 10, the gain values for the first nine documents would not be 

discounted, but the values for the tenth document, and for all subsequent documents, 

would be discounted.  The original version of DCG is 

where i is a document rank and b is a variable representing the logarithm base, which 

allows adjusting the degree of discounting applied to late arriving documents. 

DCG was recently modified to discount all documents returned after the first 

document [44].  The modification (suggested by the author) was part of our 

development of a session-based metric for evaluating a sequence of queries, which is 

discussed in Chapter 8.  The modified version results in a smoother accumulated gain 

as documents are returned as compared to the original version, which exhibits a 

transition from accumulating undiscounted gains from earlier documents to 

accumulating discounted gains from later documents.  The newly modified version of 

DCG (equation 8) is: 

 
Because there can be different numbers of relevant documents for different 

information needs, a metric that normalizes the results for each query can be useful.  
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By reflecting how closely each query result matches the best possible result, a 

normalized metric allows comparing results across multiple information needs.  Both 

CG and DCG can be normalized by first constructing a vector containing the ideal 

results, then dividing the CG or DCG vectors by the ideal CG or ideal DCG vector to 

produce Normalized Cumulated Gain (nCG) and Normalized Discounted Cumulated 

Gain (nDCG) values, respectively.  Figure 2.1 illustrates each of these four metrics, 

CG, DCG, nCG, and nDCG. 

 

 
Figure 2.1 Cumulated gain metrics 
 

 

Suppose an IR system returns a list of ten documents that have the following relevance values 
(using a four point scale) for a query known to have two highly relevant documents, three partially 
relevant documents, and two marginally relevant documents. 

Rank Relevance Judgment Relevance Score 
1 Not relevant 0 
2 Partially relevant 2 
3 Highly relevant 3 
4 Not relevant 0 
5 Marginally relevant 1 
6 Highly relevant 3 
7 Not relevant 0 
8 Partially relevant 2 
9 Marginally relevant 1 
10 Partially relevant 2 
 
The vectors for the various metrics would be as follows (using 2 as the log base for discounting): 
gain vector: <0, 2, 3, 0, 1, 3, 0, 2, 1, 2> , 
cumulated gain vector: <0, 2, 5, 5, 6, 9, 9, 11, 12, 14>, 
discounted gain vector (original): < 0, 2, 3.90, 3.90, 4.33, 5.49, 5.49, 6.16, 6.47, 7.08> 
discounted gain vector (new): <0, 1, 2.16, 2.16, 2.45, 3.3, 3.3, 3.8, 4.04, 4.5> 
ideal vector: < 3, 3, 2, 2, 2, 1, 1, 0, 0, 0 > 
ideal CG vector: <3, 6, 8, 10, 12, 13, 14, 14, 14, 14> 
ideal DCG vector(original): <3, 6, 7.26, 8.26, 9.12, 9.51, 9.87, 9.87, 9.87, 9.87> 
nCG vector: <0, 0.33, 0.62, 0.5, 0.5, 0.69, 0.64, 0.79, 0.86, 1.0> 
nDCG vector (original): <0, 0.33, 0.54, 0.47, 0.47, 0.58, 0.56, 0.63, 0.66, 0.72> 



www.manaraa.com

 

44

Many authors have argued for more realistic evaluations than those attainable 

using test collections and the Cranfield paradigm.  Here we note a few examples of 

specific critiques and specific proposals to introduce more realism. 

Using graded relevance judgments is a more realistic reflection of the user 

experience than using binary relevance judgments.  Sormunen [45] reassessed a subset 

of TREC documents using a four-point relevance scale.  Sormunen noted that about 

50% of the documents assessed as relevant by TREC assessors were rated as only 

marginally relevant when reassessed by other assessors using a graded scale, calling 

into question how well TREC comparisons of IR systems would generalize to more 

realistic settings. 

Saracevic [46] considered a broad spectrum of issues related to IR evaluation and 

argued for the importance of evaluating systems in interactive mode, not just in batch 

mode.12  Saracevic also noted that both system-centered and user-centered evaluations 

are important. 

Borlund [47] proposed a framework for evaluating interactive retrieval systems 

that seeks to retain some of the controls present in the Cranfield model while 

introducing human searchers into the evaluations.  She emphasized the use of 

                                                 
 
 
12 In TREC and other Cranfield paradigm evaluations, researchers typically submit a batch of queries, 
one query for each topic, to the IR system and then evaluate the system’s search performance based on 
mean performance across the queries.  (By search performance we mean the quality of document 
ranking, as opposed to speed or other system performance measures).  Users, on the other hand, interact 
directly with a system, submitting queries and usually reacting to the results, possibly deciding to 
reformulate the query.  Interactive evaluations introduce additional parameters that influence system 
search performance, such as the usability of the search interface and the step of translating an 
information need into a query that conforms to the query language of the IR system. 
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simulated work tasks to provide a more realistic information need to the human 

searcher, who then formulates and submits queries to a system.  The work task 

descriptions also provide a basis for making relevance judgments that relate to a given 

situation instead of indicating only that a document is about the same topic as the 

information need. 

Järvelin [48] and Ingwersen and Järvelin [49] described IR research and evaluation 

as occurring in two frameworks: (1) the system-oriented or laboratory model and (2) 

the cognitive framework, which takes a more user-oriented viewpoint.  They criticized 

past emphasis on the laboratory model and argued for the cognitive framework, which 

provides a more holistic and contextual view of information retrieval research. 

 

2.2. Documents and Subdocuments 

In this dissertation, we use document to refer to the text content that is indexed and 

retrieved by an IR system.  A document can be: the full text of an article, a section of 

an article, a book chapter, or other unit of text; an abstract of a longer piece of text; a 

bibliographic record that contains information (metadata) about a piece of text; or 

some combination of these elements.  We use subdocument to refer to a subset of a 

document, without regard for how the subset is selected.  A subdocument might or 

might not correspond to structural elements, such as sections, within the containing 

document.  A subdocument also need not be contiguous text.  Each semantic 

component instance corresponds to a subdocument. 
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Most IR research is based on returning a whole document, although matching 

documents to queries might be based on a more concise representation of the 

document, such as an abstract in a bibliographic database or a set of keywords.  

However, some areas of IR research that index and retrieve whole documents use 

subdocuments as part of the retrieval process or investigate tasks that occur primarily 

at the subdocument level.  As illustration, we highlight a few examples of 

subdocument use that are related to semantic components. 

 

2.2.1. XML 

The eXtensible Markup Language (XML) is an example of a method for 

representing subdocuments within a containing document.  XML provides an explicit 

mechanism for defining hierarchical elements within documents.  XML-based 

retrieval systems can index the content of each element separately and can return 

elements at any level of the hierarchy, from a leaf node up to the root.  XML is 

particularly useful for representing structural document organization, where XML 

elements represent structural constructs.  This representation of both content and 

structure makes XML highly suited for structured document retrieval, which uses both 

content and structure to retrieve documents.  Users can submit content-only or 

content-and-structure queries.  The Initiative for the Evaluation of XML Retrieval 

(INEX) is a large-scale effort to study XML retrieval using a test collection and annual 

evaluation campaigns similar to the TREC conferences.  Query results from XML 

retrieval might consist of elements at various levels of the hierarchy, allowing the user 
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to access whatever amount of content is desired.  Reid and colleagues have studied the 

best entry points to structured (XML) documents, considering both users’ browsing 

and querying behavior.  They define a best entry point as “a document component 

from which the user can obtain optimal access, by browsing, to relevant document 

components” [50, 51]. 

XML represents the structure of documents.  It can also be used to represent the 

semantic organization of documents, but the hierarchical nature of XML limits its 

usefulness for representing purely semantic organization because semantic content is 

not necessarily neatly organized in a hierarchical fashion.  Authors often weave 

strands of content throughout a document, or may use a different hierarchy for 

organizing content than is used in other documents in a collection.  XML could be a 

useful method for representing semantic components in documents if the documents 

are written so that they conform to an existing XML schema that represents a semantic 

component schema.  If structural elements reflect the same organization as the content, 

then the issue of overlapping semantic component instances would not arise.  

Documents that were written before a semantic component schema existed could be 

represented with XML if the documents share a well-defined structure that would be 

useful for searching.  In such cases, the semantic component schema could be created 

to correspond with the existing document structure.  Documents created using a 

template, in which the structural elements correlate with useful semantic components, 

would be particularly amenable to an XML representation that reflects a semantic 

component schema.  When semantic component schemas are developed for collections 
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of more heterogeneous documents, XML is unlikely to be suitable for representing 

semantic components because XML would not allow semantic component segments to 

overlap with each other (unless one semantic component instance is completely nested 

inside another semantic component instance). 

 

2.2.2. Other Subdocument Manipulations 

Several tasks that are related to information retrieval involve analyzing and 

retrieving text at subdocument granularity and are related to semantic component 

indexing.  We briefly discuss five such tasks:  content analysis, text segmentation, 

passage retrieval, novelty detection, and information extraction.  These tasks differ 

with respect to the importance of detecting the location and boundaries of 

subdocument text, the importance of characterizing or labeling the content in the 

subdocument text, and the purpose of the task (that is, how the results of the task are 

used).  

Content analysis [52] is arguably the task most closely related to semantic 

component indexing.  Content analysis, frequently used in social science research, is 

the systematic evaluation of the content of various forms of communication.  It 

typically involves coding (labeling) units of information within a message.  Content 

analysis can also be applied to other information types, such as audio and video, not 

just to text.  The coding scheme might be predefined or might be developed as part of 

the research.  For example, a study of the effects of television on children might 

require coding the content of various television shows.  While the underlying medium 
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can have logical units, such as words or video frames, coding generally results in 

segmenting the message into variable-length pieces corresponding to the analysis.  

Both the assigned code and the location of various coded segments, including the 

assigned boundaries, are important.  When demarcation and labeling of segments 

using a defined coding scheme is applied to text, the task is almost identical to 

semantic component indexing.  One difference between the two tasks is the purpose: 

Content analysis is a research technique whereas semantic component indexing is 

intended to enhance information retrieval.  Another difference is the model.  Semantic 

component indexing occurs in the context of a model containing document classes and 

semantic components whereas the coding scheme will vary across different research 

projects and might or might not involve classification of the document to be coded.  

Comparing two coding instances and comparing two instances of semantic component 

indexing (such as to establish the reliability of a coding scheme or a semantic 

component schema or to establish the reliability of a coder or an indexer) both involve 

comparing the labels assigned to text (either codes or semantic component names) and 

comparing the similarity of the locations that have been labeled.  We explore this 

similarity in Chapter 6 when we develop evaluation techniques for semantic 

component indexing. 

Text segmentation is the task of dividing text into sections based on changes in 

topic or subtopic.  It has been studied in the context of several problems: dividing 

previously undifferentiated streams of text, such as concatenated news stories, into 

their components [53], possibly as part of a topic detection and tracking effort [54]; 
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dividing documents into sections corresponding to subtopics to aid in information 

retrieval [55] or display of retrieval results [56]; and preprocessing text in a 

summarization system [57].  Text segmentation can be linear or hierarchical.  Linear 

segmentation typically assigns each unit of text to exactly one contiguous segment.  

The task is to correctly find segment boundaries, and evaluations have been focused 

on measuring the correctness of automatically-placed boundaries.  Semantic 

component indexing is similar in that we try to find sections of documents that pertain 

to specific aspects of the main topic.  But, unlike most text segmentation tasks, the set 

of aspects of interest (semantic components) is defined in advance based on the 

document class.  Semantic component instances within a single document can be 

discontiguous and also can overlap with other semantic component instances, unlike 

segments resulting from text segmentation tasks.  A given unit of text can belong to 

zero, one, or many semantic component instances as opposed to just a single segment 

in text segmentation. 

Using text segmentation for information retrieval is one example of a broader 

group of passage-retrieval techniques, in which documents are split into a set of 

passages (subdocuments) and similarity to the query is computed for each passage 

instead of for whole documents.  Liu and Croft classify approaches to splitting 

documents into passages as structural, semantic, window-based, and arbitrary [58].  

Semantic component instances can be considered a form of semantic passages 

(meaning that passages are defined by their semantic content), although not all 

document text is necessarily included in any of the semantic component instances.  A 
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more significant difference between our approach and passage retrieval is that we 

propose to use information about semantic component instances to supplement, not 

replace, whole-document retrieval techniques. 

Novelty detection is similar to text segmentation in that the goal is to find 

instances of different subtopics, but the focus of novelty detection is on the different 

subtopics, not on their locations within documents.  The TREC novelty task focused 

on finding sentences that were both relevant to a topic and novel, given the sentences 

that have already been seen [59].  Semantic component indexing differs from novelty 

detection because the aspects of interest, semantic components, are defined in advance 

and because the locations of the semantic component instances are important. 

Information extraction (IE) is a somewhat different subdocument-level task.  

Information extraction systems identify certain types of information in unstructured 

text, such as entities, facts, and events.  IE systems then extract the information into 

databases or templates.  IE can be part of a question answering system, a specialized 

form of information retrieval that returns a fact, an entity, or a short answer that 

contains the answer to the question.  The segments extracted by IE systems are 

generally quite short.  Cardie points out that IE is inherently domain-specific since 

systems typically identify domain-specific relations among entities in the text [60].  

Some of the semantic components we have identified in Decision Notices, such as 

Responsible Official and Date, are discrete, fact-oriented bits of information that 

would be suitable for extraction.  Instances of other semantic components, such as 

Issues in Decision Notices or Management in documents about Clinical Problems tend 
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to be more diffusely distributed in the text and less amenable to identification using IE 

pattern-matching techniques.  (See Chapter 4 for a discussion of the Decision Notice 

and Clinical Problem document classes and the semantic components we identified in 

those document classes). 

 

2.3. Genre 

A number of authors, such as Crowston and Kwasnik [61], Rauber and Müller-

Kögler [62], and Freund and colleagues [63], have suggested using document genre to 

improve information retrieval.  The term genre, traditionally used to describe literary 

and artistic works, has also been used to describe categories of organizational 

communications [64], documents in digital libraries [62], and web pages [65], 

although there does not seem to be a precise and universally accepted definition of 

genre.  Orlikowski and Yates describe genres of organization communication (such as 

business letters and annual reports) as being “characterized by a socially recognized 

communicative purpose and common aspects of form” [64].  Attempts to 

automatically classify document collections on the basis of genre [62, 66, 67] 

generally rely on identifying attributes, or facets, that can be used to create a genre-

classification system.  Documents are assigned to genres based on the values for those 

attributes.  The document classes in our model are akin to genres.  For some familiar 

genres, it is easy to suggest semantic components whereas for others it is not so easy.  

For example, recipes typically have ingredients and cooking instructions, but what 

about letters or emails?  All three documents have an identifiable form and purpose.  
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The difference seems to be that recipes are both specific to a domain (cooking) and 

have a predictable topic type (a dish), but knowing that a document is a personal letter 

or an email gives us little clue about the types of information likely to be present. 

Turner and colleagues [68] created a model in the public health domain in which 

genre was one component.  They used content analysis and a study with expert users 

to identify key elements in public health gray literature13 that could serve as document 

representations in a searchable database.  The key elements consisted of metadata that 

could be automatically extracted using natural language processing and brief, 

automatically-generated summaries of particular kinds of information in the 

documents.  Document type (such as newsletters, guidelines, and data sets) was just 

one of the key elements.  Some of the other key elements in the proposed document 

representation, such as description of the problem, description of the intervention, and 

target population, are similar to semantic components but were not linked to particular 

document types. 

 

2.4. Concept Relations in Information Retrieval 

Complex information needs often include multiple concepts that are related in a 

specific way.  For example, consider this question from a database of physician 

questions [69].  “What is the best antibiotic to use for subacute bacterial endocarditis 

                                                 
 
 
13 Gray literature consists of documents, such as reports, meeting notes, and policy documents, that do 
not appear in peer-reviewed or commercial publications and are often not indexed in databases used by 
professionals for information retrieval. 
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prophylaxis in penicillin-allergic patients?”  The question is not just about antibiotics, 

or prevention, or bacterial endocarditis, it is about preventing endocarditis (an 

infection of the lining of the heart) with antibiotics.  Modern IR systems can retrieve 

documents based on a query that includes multiple concepts, but they do not restrict 

the retrieval to documents about a specific relationship between concepts.  The query 

may include a word or a phrase that expresses the desired relationship between two 

concepts, but that query term is treated like any other query term, independent of the 

concepts it relates.  Thus, an IR system can retrieve a document that contains the 

desired concepts, but that is not relevant because the concepts are not related in the 

document (they might appear in completely unrelated sections of text) or because they 

are related differently than in the user’s information need.  In a detailed failure 

analysis of an early IR system, Lancaster termed these precision failures “false 

coordination” and “incorrect term relationships,” respectively [70]. 

Information needs can be modeled as relations, where a relation is an ordered pair 

of concepts or terms that are related to each other in a particular way and has a label 

that describes how the concepts are related (the relationship).  For example, the 

relation treats(“penicillin”, “endocarditis”) expresses the notion that penicillin is 

used to treat endocarditis.  Here penicillin is the intervention and endocarditis is the 

condition being treated.  The relationship is important because penicillin can be used 

both to prevent and to treat endocarditis. 

Concept relations abound everywhere, not just in medicine.  For example, a 

business analyst might be interested in companies and products.  Companies 
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manufacture, sell, and buy products.  Companies also buy and sell each other.  

Products can be used to manufacture other products, or products can be bought and 

sold together.  Finding information about specific business relations might be 

facilitated by explicit matching of relations in query and text.  The relation 

buys(“McDonalds”,“potatoes”) expresses more of the meaning of the question “How 

many tons of potatoes does McDonalds buy?” than the query McDonalds buys 

potatoes, which could also represent “Who buys potatoes at McDonalds?”. 

Current IR systems do not represent relations explicitly and may even interfere 

with retrieving documents that contain the relations.  Relationships are often expressed 

as prepositional phrases or as verbs.  In full-text indexing, prepositions often appear on 

stopword lists and are discarded.  When a relationship is expressed by a commonly 

occurring verb, the verb will appear in the index but the verb may have little effect on 

retrieval.  Controlled vocabularies usually include noun forms of terms that represent 

relationships, such as “treatment” or “etiology”.  Manual indexers can choose 

relationship terms if the relationship represents a main focus of the document, but 

including a relationship term as a keyword does not indicate which concepts 

participate in the relationship.  In both full text and controlled vocabulary indexes, 

relationship terms are usually treated the same as the concept terms they relate, with 

no structure to represent the relation itself. 

Users sometimes represent relations implicitly through coordination, the 

combining of terms that represent different concepts to represent a new or more 

complex concept.  Terms can be combined by entering a multiword query, by using a 
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logical AND operator, or by including a phrase in the query (usually by enclosing the 

phrase in quotation marks) if phrases are allowed by the IR system’s query language.  

IR systems that use full text indexing are typically postcoordinate, meaning that 

descriptors are simple terms that are combined when a search is processed instead of 

during indexing.  The combination can either be set based (such as for the Boolean 

query “cat” AND “platypus”) or can be implemented with ranked similarity (such as 

for the natural language query “cat platypus”).  Phrase matching can be implemented 

by indexing phrases or by finding documents containing all the words in the phrase 

and then checking for adjacency and order. 

Systems that use controlled vocabularies, such as the Medical Subject Headings 

(MeSH) [71] usually have some degree of precoordination.  A precoordinated term is 

a multiword term, such as Heart Surgery, that describes a complex concept.  Some 

precoordinated terms represent relations.  For example, a specialization of the broader 

term Endocarditis is the term Endocarditis, Bacterial that represents 

causes(“bacteria”, “endocarditis”).  In addition, indexers and searchers can use role 

indicators (also called qualifiers or subheadings) that are available in some controlled 

vocabularies to indicate a particular aspect of a topic.  An article about complications 

of endocarditis could be indexed with Endocarditis/complications, a MeSH 

descriptor/qualifier pair [72] that represents a partial relation.  In some cases, a pair of 

complementary qualifiers can be used to specify a full relation, such as using 

Endocarditis/drug therapy and Penicillin/therapeutic use to represent the relation 
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treats(“Penicillin”, “Endocarditis”).  Lancaster [22] discusses other precoordinate 

indexing systems that also use role indicators. 

One way to express queries is as a set of relations that should appear in retrieved 

documents.  In previous work [73], we modeled relations in three types of queries to 

an IR system.  First, when the user is interested in two concepts related in a particular 

way, we have a full relation.  Second, if a user wants to know everything about a 

topic, we can represent the relationship and the other concept in the relation with 

variables in what we call an open relation. Third, when only one of the concepts is 

specified and the other can be represented as a variable,  we have a partial relation.  

The term partial relation was coined by Khoo and Myaeng [74].  Queries can also be 

composed of combinations of full and partial relations.  Figure 2.2 shows examples of 

these query types.  The letters X and Y in Figure 2.2 represent variables, meaning that 

the slot can be filled by any concept or relationship. 

 

Query Type Relation 

endocarditis open relation 
X(“endocarditis”, Y) 
          or 
X(Y, “endocarditis”) 

What causes endocarditis? partial relation causes(X, “endocarditis”) 

How does S aureus cause 
endocarditis? full relation causes(“S aureus”, “endocarditis”) 

Figure 2.2 Relational representations of three query types 
 

 

Using relational representations of information needs, we studied whether relation 

matching could improve document ranking in a small test collection of medical 
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documents that we created [73].  From the ClinicalQuestions Collection, an online 

repository of almost 3000 questions collected by researchers studying the information 

needs of physicians in clinical settings [69], we chose 24 questions that were about 

either causation or treatment and that contained a single full or partial relation.  We 

used an extended query language to express the relations in our queries to our 

experimental search system and developed collections of regular expressions to 

automatically identify instances of treats and causes relations in text documents.  We 

achieved better ranking of search results by explicitly modeling the relations in the 

information need, and searching for documents containing the same relation, than 

when using more traditional methods to express relationships in the information need.  

The three comparison methods were: (1) using a single word in a natural language 

query (either “cause” or “treat”), (2) using the single word plus several synonyms, and 

(3) using a proximity operator to ensure that the words for the concepts and the words 

for the relationships occurred near each other in the text. 

Although relations might be useful constructs to model queries and the expression 

of facts and ideas in text documents, identifying all of the relations that occur in a 

document seems impractical.  In a given domain, certain relationships are particularly 

significant and will appear in a large number of queries.  We were reasonably 

successful at identifying instances of the causes and treats relationships in a set of 

documents from a single source, but developing comprehensive sets of regular 

expressions to identify even a limited number of important relationships is 

challenging.  The semantic components model is an alternative approach for using 
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relations in information needs to enhance information retrieval.  Semantic components 

are not as fine-grained as regular expressions, and not all concepts mentioned in a 

semantic component instance participate in the relationship indicated by the semantic 

component label.  Furthermore, semantic components can cover a broader information 

type than a single relationship.  So, while using semantic components may be less 

specific than using regular expressions to capture concept relations, semantic 

components are also more flexible than regular expressions and may be more scalable 

than trying to identify the exact text that participates in a relation. 

Others have used relation matching to try to improve retrieval performance, with 

modest results.  For example, Khoo and colleagues [75] studied a single relationship 

they called cause-effect in a subset of documents (Wall Street Journal articles) and 

queries from the TREC test collections.  They used a broader notion of the causes 

relation than we did in our work.  For example, they constructed the relation [The 

antitrust investigation]effect must be a result of [a complaint]cause (their notation) for the 

information need statement “Document discusses a pending antitrust case.”  They used 

both partial matches and full matches to match a query relation to document relations.  

They did not find any improvement with relation matching except when they used a 

weighted combination of text word matching, relation matching, and proximity 

matching, and first optimized the weightings for each query individually in a training 

set. 

Wendlandt and Driscoll [76] and Liu [77], investigated the use of thematic roles to 

enhance IR.  These authors viewed terms in a sentence as taking on thematic roles, 
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such as recipient or consequence, based on the relationships expressed in the sentence.  

Their focus was on the role each concept plays in a relation, instead of on the 

relationship itself.  As noted by Khoo and Myaeng [74],  this approach can be viewed 

as partial relation matching. 

Wendlandt and Driscoll [76] developed a lexicon of words, called triggers, that 

indicate the presence of a thematic role or an entity attribute, which they collectively 

referred to as categories.  Since triggers are often general words, such as prepositions, 

the authors assigned probabilities that a trigger word indicates a particular category.  

Although they did not use regular expressions, their use of prepositions was similar to 

our use of prepositional phrases in regular expressions.  Their two-step approach used 

word frequencies to retrieve a collection of possibly relevant documents and then used 

category information to rerank the initial n top-ranked documents. 

Liu [77] built on the work of Wendlandt and Driscoll by incorporating thematic 

role categories into a Semantic Vector Space Model (SVSM) that integrated data 

about thematic role categories directly into the vector space model (VSM) for 

retrieval.  In the SVSM, each term had both a weight, based on the term’s frequency, 

and a case weight for each of the 33 possible thematic roles that represents the 

probability that the term will trigger that particular thematic role.  Liu used more 

intensive text analysis than Wendlandt and Driscoll.  He assigned case weights based 

on part of speech and syntactic type and assigned cases to prepositional phrases based 

on a manually-built prepositional case realization (PCR) dictionary. 
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These two studies were domain independent.  The authors investigated a broad 

selection of general relationships that one might find in any document collection.  

Their thematic roles corresponded to partial relations; they did not explore a notion of 

full relations.  Their results were lukewarm.  Wendlandt and Driscoll found 

improvement in a very limited evaluation [76].  Liu found improvement only for 

longer queries that consisted of research paper abstracts [77]. 

Farradane used the “psychology of thinking” to identify nine relationships that he 

claimed were necessary and sufficient to express concept relations in all subject fields 

[78, 79].  He proposed a system of relational indexing that would use a controlled 

vocabulary plus these nine relationships, which were expressed using a shorthand of 

typographical symbols.  Because some concepts participate in more than one relation, 

some of his indexing diagrams were quite complex, containing rings and other two-

dimensional structures.  Farradane envisioned that relational indexing of queries as 

well as documents would be performed by trained indexers (a more reasonable vision 

in 1980 than in 2008) but that the indexing products could be encoded and stored 

electronically and that queries could be matched to documents using computer 

systems.  Although his work focused on full relations, he also alluded to the potential 

usefulness of allowing queries to contain partial relations.  The human effort required 

for relational indexing limited evaluation to small document collections.  In one 

evaluation, most terms had been used to index so few documents that Boolean 

keyword searches alone were quite effective [80].  Relational indexing was never 

commercially implemented and the potential usefulness of relational indexing for real-
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life searching has never been fully investigated [81].  Like Wendlandt and Liu, 

Farradane focused on general relationships that could be applied in any domain 

instead of taking a domain-specific approach as we have with semantic components. 

 

2.5. Facets and Faceted Browsing 

Classification systems and controlled vocabularies for organizing information can 

be either enumerative or faceted [82].  Enumerative systems enumerate all the subjects 

of interest (which may be organized hierarchically) whereas faceted systems define the 

properties of interest.  Classifying or indexing with a faceted system involves 

identifying the applicable facets and their values.  The Art & Architecture Thesaurus 

[83]  is an example of a faceted scheme that allows description of objects or concepts 

related to art using terms representing various facets, such as physical attributes, styles 

and periods, agents (people and organizations), and materials. 

Faceted schemes can also be used to organize websites and to facilitate browsing 

access to information.  Hearst and colleagues [84] use a representation called 

hierarchical faceted categories to create a user interface framework, Flamenco, that 

mixes elements of searching and browsing to enable exploration of search results.  

Flamenco uses metadata values for each facet to give searchers a browsing-like view 

of search results (such as viewing recipes by “Dish Type”).   

Development of a semantic component schema is not the same as performing facet 

analysis for a topic because the purpose is different.  Traditional facet analysis 

involves such principles as exhaustivity and mutual exclusivity [85], which we do not 
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try to achieve.  Some semantic components correspond quite naturally to facets.  For 

example, diagnosis and treatment can be facets of diseases.  However, semantic 

components can also contain information that might not be considered a topic facet, 

such as the scheduling instructions for a given hospital within a practical information 

component for documents about surgical operations.  In some cases a semantic 

component schema might combine two or more concepts that are different facets of a 

topic into a single semantic component, such as combining epidemiology and natural 

history of a disease into general information.  Because semantic components are 

intended to facilitate retrieval, not to describe the domain, knowing either the contents 

of a particular document collection or the frequently occurring information needs 

among users of the collection can lead to selecting semantic components with varying 

degrees of specificity to represent document content.  Unlike Flamenco, in which 

labels are assigned from the faceted metadata categories, the “value” for a semantic 

component is the text that pertains to a semantic component.  Our approach allows the 

semantic components for each document class to be chosen at varying levels of 

specificity.  More general components encompass more text, provide more exhaustive 

indexing, and can cover a wider range of queries while more specific components can 

support greater precision.  This flexibility makes semantic components applicable to a 

wide range of documents. 
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2.6. Discourse Models 

Discourse analysis is a research area that typically studies both content and 

structure and that focuses on units of text (or other communication media) larger than 

a sentence.  Modeling the structure of documents at the discourse level has been used 

as a way to analyze and use the semantic content of documents for various information 

tasks, including automatic generation of natural language text, document detection and 

information extraction, automated abstraction, and automated summarization as well 

as for document retrieval.  We loosely group various discourse models into three 

categories: (1) models based on the rhetorical/argumentation function of text 

segments, (2) models based on the communicative function of the document type, and 

(3) models based on the semantic roles of domain-specific entities and relationships in 

the document.  We briefly discuss a selection of research in this area to compare and 

illustrate some models in each of these categories. 

Mann and Thompson [86] and Teufel and Moens [87] worked with models based 

on the rhetorical and argumentation function of text segments.  Mann and Thompson 

[86] introduced Rhetorical Structure Theory (RST) as a way to analyze existing text 

and as a theoretical basis for the planning phase of automatic generation of large scale 

texts.  For example, if the goal is to produce a message that will have a particular 

effect on the reader, RST is a way to build a rhetorical structure so that the message 

will have its intended effect.  RST describes text using a tree structure, where each 

subtree is an instance of an RST schema.  Each RST schema is defined by a relation 

(or sometimes two relations) between a nucleus (a span of text) and one or more 
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satellites (other text spans).  Each relation describes a rhetorical move or relationship, 

such as evidence, justify, motivation, and restatement.  The leaf nodes of the RST tree 

are usually independent clauses, resulting in a fine-grained description of the text.  

Teufel and Moens [87] developed an annotation schema for classifying sentences in 

scientific articles to build a human-annotated training set and to serve as the basis of 

an automated summarization system.  Like Mann and Thompson, their schema was 

domain-independent, but it was intended only for scientific articles and consisted of 

seven nonhierarchical categories: aim, textual, own, background, contrast, basis, and 

other.  The basic text unit is larger (sentence instead of clause) than in RST and the 

categories refer to the role of the sentence in the argument of the entire paper instead 

of the rhetorical role within a smaller section of adjacent text. 

A more common approach is to develop models based on elements being 

communicated by various document types, also referred to by Paice [88] and by Liddy 

and colleagues [89] (both citing van Dijk), as the document’s superstructure.  We 

could also consider this approach to be genre-based.  Liddy [90] worked with 

professional abstractors to develop a hierarchical schema for the discourse structure of 

empirical abstracts.  The schema can be used to indicate the semantic roles (such as 

subjects and data collection under methodology and significance of results and 

practical applications under conclusions) of concepts appearing in the abstract text.  

She also analyzed a sample of abstracts that had been marked up using her 

representation to identify “clue-words” that could aid automatic analysis of abstracts 

and facilitate automatic filling of slots in the frame-like structure used to represent the 
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schema.  She suggested possible applications for a discourse-level representation of 

abstracts, including information retrieval and automated extraction of information.  In 

other work, Liddy and colleagues [89] used a discourse model for newspaper articles 

and tested an application that classified sentences into the various components of the 

model (such as circumstance, consequence, and main event).  This application was a 

module in a larger system, called DR-LINK, for retrieving and extracting information 

related to specific topics.  DR-LINK was developed and evaluated as part of the 

Defense Advanced Research Projects Agency (DARPA) TIPSTER Text program.  

When the researchers investigated in detail the 26 Topic Statements (information need 

descriptions) in the TIPSTER collection for which DR-LINK performed well, they 

found that in 12 cases the discourse-level data was useful.  Those 12 Topic Statements 

included a requirement that the information about an entity match another dimension, 

such as a temporal relation, or provide information about an aspect of the entity, such 

as the impact of an event [91].  Purcell et al. [92] developed context models of three 

types of medical research articles that could be used to represent documents in a 

retrieval system.  A context model is basically an outline of the types of information 

that appear in a particular type of document, such as case presentation and case 

discussion in a case report and methods and results in a clinical research article.  The 

contexts they identified were closely tied to the document organization that is 

characteristic in each type of medical research article.  Conrad and Dabney [93] 

developed a schema to describe judicial opinions that could support development of 
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new search tools.  Their schema included components such as concurring opinions, 

dissenting opinions, historical facts, and disputed issues. 

Paice took a similar, but more domain-specific and less structural, approach to 

identifying important concepts in research papers that would be useful for both 

abstracting and indexing [94].  First he used manual analysis to identify the important 

semantic roles played by concepts in the domain (crop agriculture) and identified 

characteristic “context patterns” that signaled their occurrence.  One example of a 

context pattern was “effect of INFLUENCE on PROPERTY of/in SPECIES” where 

the capitalized words were important concepts in the domain.  A computer program 

identified candidate strings to represent the concepts based on the occurrence of the 

strings in the context patterns.  The candidate strings were weighted according to the 

strength of the evidence provided by the context patterns in which they occurred.  

Although framed as a discourse-level approach, the result is similar to identifying 

concepts by the relations they participate in.  Paice also reviewed the literature on 

automated abstract construction and noted the difference between using domain-

specific semantic schemas as frameworks for representing text content and using 

superstructures that describe discourse structure typical of certain document types, 

such as research papers and abstracts of research papers [88]. 

Not all discourse models fall neatly into our three categories.  For example, we 

described the work of Conrad and Dabney [93] as an example of the superstructure 

approach because their components have a specific role in the document type (judicial 

opinions) in which they occur.  However, their model also has features of the other 
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two categories.  Their components are specific to the legal domain as well as to the 

document type and their model could be characterized as representing the structure of 

an argument.  Above, we described the work of Turner and colleagues [68] as an 

example of using document genre, but their approach is mixed.  They did not try to 

identify the superstructure of each genre, but they did identify discourse elements 

(such as such as description of the problem and description of the intervention) in 

addition to document types.   

Semantic components can be considered a form of discourse analysis that is 

related to both the superstructure and the domain-specific approach.  Our analyses 

begin with a specific collection of documents, and the nature of the document 

collection determines the nature of the discourse analysis.  As will be discussed in 

Chapter 4, when analyzing documents from sundhed.dk, which did not have a well-

defined, homogeneous superstructure, our schema reflected important domain-specific 

concepts and relationships.  When analyzing natural resource management documents, 

which had a superstructure that is mandated by law, our schema reflected elements of 

the superstructure. 

 

2.7. Summary 

In this chapter we presented a brief introduction to information retrieval.  We 

discussed both the basic functional components of IR systems and important issues 

related to evaluating IR systems.  We then discussed some areas of research that are 

related to semantic components: 
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• analysis and use of text at a subdocument level 

• classification of documents by genre 

• identification of concept relations in documents and the use of relations to 

improve document retrieval 

• identification and use of topic facets 

• construction of discourse models of documents 

We showed how the semantic components model uses ideas from each of these 

areas and briefly compared and contrasted semantic components to existing work. 
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Chapter 3    The Semantic Components Model 

 

The semantic components model uses additional information about the semantic 

content of documents to match documents to information needs.  Instead of providing 

a single semantic component schema that is applicable to all document collections, or 

to all documents in a particular domain, we take a divide-and-conquer approach.  Each 

semantic component schema is tailored to a domain and to a particular document 

collection.  A semantic component schema does not try to represent all the concepts or 

relationships in a domain (or in a collection).  Instead, a semantic component schema 

provides a set of semantic components that are important to the users of a collection 

and that can help differentiate types of information needs.  Semantic components 

provide information to supplement, not replace, existing retrieval methods. 

Traditional IR systems using natural language queries or keyword queries 

primarily support topical requests.  In other words, the IR system returns documents 

“about” the topic that is represented by the word(s) in a query.  As was discussed in 

Chapter 2, natural language queries, and full text indexes, sometimes contain words 

that represent relationships or facets of concepts.  Controlled vocabularies also contain 

some terms that represent facets of concepts.  Some controlled vocabularies (such as 

the Art & Architecture Thesaurus) have an explicitly faceted structure.  Such faceted 

vocabularies allow some representation of the relationships between concepts in a 

query.  Structured queries that accept query terms restricted to specific metadata fields 

(such as title, author, and publication date) can represent additional, non-topical facets 
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of the information need.  Semantic components can supplement natural language 

queries, full-text indexes, faceted vocabularies, and structured queries to provide an 

orthogonal method of representing semantic relationships in queries and documents. 

This chapter describes the semantic components model in detail.  We begin by 

describing a prototype indexing application in Section 3.1.  We then provide a formal 

description of the semantic components model in Section 3.2.  In Section 3.3 we 

discuss semantic components as a specialized form of superimposed information.  In 

Section 3.4 we provide a detailed overview of our approach to investigating the 

feasibility and potential benefits of semantic components to enhance information 

retrieval.  We summarize this chapter in Section 3.5. 

 

3.1. Indexing Prototype 

To use semantic components for retrieving documents, semantic component 

instances must be identified in documents, a process that we call semantic component 

indexing.  To further clarify and illustrate what we mean by semantic component 

indexing, we describe a prototype indexing application that we implemented to 

demonstrate indexing feasibility and to automatically record indexing decisions.  

When building the prototype, our goal was to allow an indexer to record indexing 

decisions with a minimum of effort.  The work of indexing should be the intellectual 

effort of understanding and analyzing the document, not coping with mechanisms to 

record data. 
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The prototype is written in Java and records data from each indexing instance in a 

text file.  A configuration file specifies the semantic component schema for the 

document collection being indexed.  This specification allows the application to offer 

the indexer a menu of document classes appropriate to the collection.  The application 

interface uses two side-by-side panes.  The left pane displays the document associated 

with the URL that is entered by the user.  Initially the right pane displays a menu of 

document classes.  Figure 3.1 shows the indexing prototype interface while a 

document class is being selected for a document (in Danish) that was used in the 

indexing study (described in Chapter 7).  The upper panel in Figure 3.1 shows a 

screenshot of the entire interface.  The lower panel shows the same screenshot, 

enlarged and cropped for better readability. 

After the user selects a document class, the appropriate menu of semantic 

component labels for that class becomes available.  Figure 3.2 shows the same 

document as Figure 3.1 while semantic components are being indexed by highlighting 

and right-clicking on a menu.  The right pane displays a vertical series of smaller 

panes, one for each semantic component in the document class.  To index a document, 

the indexer uses the mouse to highlight a segment of the text appearing in the left 

pane.  Right-clicking the mouse causes a menu of semantic component labels to 

appear, each label in a different color.  Clicking one of the labels causes the 

highlighting to change to the color associated with the chosen label and also copies the 

highlighted text into the small pane associated with the label on the right.  The copied 

text retains the colored highlighting for easy visual identification of text belonging to 
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Figure 3.1 Screen shot of the prototype indexing application: choosing the document class.  The lower 
panel is a magnification of the top part of the upper panel. 
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 Figure 3.2 Screen shot of the prototype indexing application: marking semantic components 
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each semantic component.  Additional text segments can be added to an existing 

component by highlighting a new segment of text and repeating the sequence of right-

clicking and choosing from the displayed menu.  Text that has already been 

highlighted and assigned to one semantic component can be re-highlighted and 

assigned to another semantic component as well.  Errors can be undone by clicking a 

button to remove the text assigned to a semantic component.  That now-empty 

component can then be re-indexed.  The indexing application records the indexer’s id, 

a timestamp, the document title and URL, the assigned document class, character 

offsets for the beginning and end of each segment, and the text in the semantic 

component instance.  The application automatically adjusts the boundaries if 

overlapping or redundant segments are added to a given semantic component instance. 

 

3.2. A Formal Description of the Semantic Components Model 

A document collection that has been (at least partially) indexed in the semantic 

components framework, an SCI collection, is a triple (D, M, I) where: 

• D is a nonempty set of documents. 

• M is a nonempty set (possibly a singleton) of semantic component schemas 

(defined below). 

• I is a nonempty set of indexing instances (defined below). 

Definition: A semantic component schema m is a triple (C, S, R) where: 

• C is a set of document classes. 

• S is a set of semantic components. 
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• R is a relation that represents the relationship between a document class and 

the semantic components that represent the types of information found in 

documents that belong to the class.  R is a subset of C × S, that is R = {(c, s) | 

c ∈ C, s ∈ S, and s is a semantic component for document class c}. 

A document class is formed based on a concept that represents the shared 

similarity among the documents assigned to that class; the concept is represented by a 

symbol that serves to label the class.  Similarly, a semantic component is a concept 

that is an important kind of information for a class of documents; the concept is 

represented by a symbol that serves as a label for the semantic component. 

Definition: A text unit ud is an occurrence of a minimum unit of text in document 

d. 

Definition: The text universe for a document, Ud, is the set of all text units ud in 

document d. 

For the purpose of discussion, we consider each occurrence of a character as a text 

unit.  Although we focus on text, many documents that are primarily textual also 

contain images and graphics.  We consider images and graphical elements to be units 

as well.  Depending on the document format and level of preprocessing available to 

delimit units, an implementation could also treat words, sentences or other elements 

that can be individually selected as units. 

We assume that a document is a linear sequence of text units.  Two units are 

consecutive (or contiguous) if they occur in the same document and they are adjacent 
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(no other unit occurs between the units).  The same character in a different position is 

a different text unit. 

Definition: A semantic component instance ts,d is all of the text in document d 

that has been labeled with the symbol for semantic component s.  ts,d  = { ud ∈ Ud | 

gs(u) = true} where gs() is the characteristic function for semantic component s, i.e., it 

is a function that maps a unit to either true or false for s.   

Definition: An indexing instance i ∈ I is a quadruple (d, c, m, {ts1,d, ts2,d, ... tsn,d}) 

where 

• d ∈ D is a document. 

• c ∈ C is the document class assignment for document d, which can result from 

either automated classification or human decision, and c is a document class in 

schema m. 

• m ∈ M is the semantic component schema used to index d in indexing instance 

i. 

• {ts1,d, ts2,d, ... tsn,d} is a set of semantic component instances tsi,d in document d 

and each tsi,d is an instance of a semantic component si such that (c, si) ∈ R in 

semantic component schema m. 

Implicit in the definition of an indexing instance is the notion of an indexing 

session that links the semantic component instances for a document that are parts of a 

single output by a particular indexer.  An indexing instance can represent the 

intellectual effort of a human indexer or the results of an automated indexing 

application. 
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The set of indexing instances I in the SCI collection is the set of all indexing 

instances i in that collection.  A given document can have multiple indexing instances 

that result from different indexing sessions and not every document in an SCI must 

have an indexing instance.  Two indexing instances for a particular document may or 

may not have been assigned the same document class, and may or may not have been 

indexed using the same schema. 

Definition: A segment of a semantic component instance t for document d is a 

maximal set of consecutive text units (and is therefore a subset of Ud). 

Note that two different segments of a semantic component instance s are non-

overlapping because, by definition, a segment is a maximal set of contiguous units.  In 

other words, y ∩ z  =  Ø for distinct segments y and z in s. 

Note that these definitions do not require that a document belong to only one class 

or that it have only one indexing instance.  Such a restriction can be imposed if 

desired; the experiments we describe allowed for at most one indexing instance per 

document. 

 

3.3. Semantic Components as Superimposed Information 

Superimposed information is information that is “placed over” existing 

information and can serve a variety of functions, such as organizing, linking, 

annotating, supplementing, or even just highlighting a subset of the information 

present in the existing base layer [95, 96].  Superimposed applications are applications 

that provide facilities to create and manipulate superimposed information.  Marks are 
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encapsulated addresses that allow a superimposed application to reference a subset 

(not necessarily a proper subset) of the information in a base layer document. 

Identification of semantic components in a document (semantic component 

indexing) supplies a layer of additional, superimposed, information about the text in 

the document.  The semantic component labels are specialized annotations, describing 

the content of some portion of the document.  Semantic component indexing can be 

implemented as a form of superimposed information, by using marks to indicate the 

location of each segment belonging to a semantic component instance and by using the 

semantic component name as an annotation for the segment of text.  Two 

characteristics distinguish semantic component indexing from general superimposed 

information. 

• Semantic component indexing has a specialized purpose and usage model.  

Superimposed information is any information that is superimposed on a base 

document, and can serve a variety of purposes.  On the other hand, semantic 

component indexing serves a particular purpose.  It provides an additional 

description of the content of a portion of the document (a subdocument) that 

can be used to enhance information retrieval.  Instances of semantic 

component indexing can be stored in an index and used to filter or rank search 

results and to provide additional information about each document that is 

represented in a display of search results. 

• Semantic component indexing conforms to a semantic component schema that 

specifies document classes and associated semantic components.  
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Superimposed information in general has no such requirements.  Superimposed 

information does not require that marked text (the excerpt of text referenced by 

a mark) have a label or any other kind of annotation.  If an annotation is 

present, its value is not restricted to a set of semantic component labels.  

Document classes are not part of the superimposed information model, 

although document classification can be implemented by annotating a mark 

that references the whole document with a label that represents the class name. 

If semantic component indexing is implemented using marks to identify segments 

belonging to semantic component instances, a few additional mechanisms are needed 

that are not ordinarily present in superimposed applications.  A superimposed 

application used to identify, manipulate, or store semantic component indexing must 

have mechanisms to: 

• link segments that are part of the same semantic component instance 

• link semantic component instances that are part of the same semantic 

component indexing instance 

• ensure that semantic component indexing conforms to the semantic component 

schema 

 

3.4. Studying the Feasibility and Potential Benefits of Semantic Components 

Before semantic component indexing can be performed, a semantic component 

schema must be developed that is tailored to the particular document collection.  For 

semantic component indexing to be useful for searching, users’ information requests 



www.manaraa.com

 

81

must be expressed in such a way that semantic component information can be used to 

match documents to requests.  And finally, the search system must be configured to 

use the additional information in a user’s query that specifies one or more semantic 

components and possibly specifies search terms that should appear in the specified 

components.  To fully assess the potential usefulness of semantic components there 

are four general questions to consider: 

1. Can document classes and semantic components be identified for particular 

domain-specific document collections? 

2. Can searchers express information needs using document classes and semantic 

components? 

3. How easily can semantic components be identified in documents? 

4. Are semantic components useful for retrieving documents? 

We explored each of these four areas by investigating more specific versions of 

these questions in a particular domain and a particular setting in order to establish 

preliminary evidence regarding the feasibility and usefulness of semantic components 

for indexing and searching in domain-specific digital libraries.  This section provides 

an extended overview of the remainder of the dissertation and describes how we 

addressed each of these areas in the research that is presented in Chapters 4 – 8.  The 

details of our methodology appears in the individual chapters.  Most of the research 

has been done in the healthcare domain, but we have also done some preliminary work 

investigating documents produced and used by natural resource managers, particularly 

documents mandated by the National Environmental Protection Act (NEPA).  Table 
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3.1 summarizes our investigations in each of these four general areas.  We elaborate 

on the information that is presented in the four rows of the table in the following four 

subsections. 

 

3.4.1. Identifying Document Classes And Semantic Components In Document 

Collections 

We addressed the first question by investigating two related issues: 

• What methods are available and useful for analyzing a document collection for 

the purpose of identifying useful document classes and semantic components? 

• What lessons can be learned from preliminary efforts to analyze a collection 

and use the analysis? 

Table 3.1 Overview of methods to investigate the feasibility and usefulness of semantic components 
General question Methods of investigation 

Preliminary analysis of two collections in two domains 
Use of one of the preliminary analyses plus an analysis of a 
second collection in the same domain in a study that 
mapped information needs to the schemas for two 
appropriate collections 

Can useful document classes and 
semantic components be identified for 
particular domain-specific document 
collections? 

Use of analyses of sundhed.dk documents for indexing and 
searching studies 

Can searchers express information 
needs using document classes and 
semantic components? 

Mapping of an existing clinical questions taxonomy to the 
schemas for two medical document collections 

User study of semantic component and keyword indexing How easily can semantic components 
be identified in documents? Document indexing to support a searching study 

Are semantic components useful for 
retrieving documents? Interactive searching study 

 

In Chapter 4 we describe our experiences analyzing three document collections in 

two different domains: medicine and public land management.  We discuss two main 
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approaches to identifying a set of document classes: (1) analyzing a document 

collection based on document sampling, and (2) re-using existing document types.  

We also discuss two stages of the analysis with respect to semantic components: (1) an 

initial analysis of the collection itself, and (2) refinement based on the expected 

characteristics of information needs, search tasks, and users. 

In the medical domain, our first experience consisted of an initial exploration of 

the documents available from the national Danish health portal, sundhed.dk.  We 

subsequently used sundhed.dk documents for three experiments and each time we 

refined our schema for sundhed.dk.  Chapter 4 reports on our experiences and the 

lessons we learned from iteratively developing and using analyses. 

 

3.4.2. Expressing Information Needs With Semantic Components 

To better understand how information needs can be expressed using a query 

language extended with semantic components, we mapped a published taxonomy of 

questions asked by primary care physicians [8, 9] to the document types and semantic 

components that we found in two collections of documents intended for physicians.  

The information needs represented in the taxonomy have already been abstracted into 

generic questions (such as “What is the cause of symptom X?”).  We analyzed how 

well the generic questions in the taxonomy could be expressed using the semantic 

component schemas for the two document collections in order to answer the question: 

• What proportion of clinical questions and clinical question categories can be 

expressed using document classes and semantic components identified in two 
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collections of documents that are intended to serve the clinical information 

needs of physicians? 

We describe the study in detail and report the results in Chapter 5. 

 

3.4.3. Indexing Semantic Components In Documents 

The success of the semantic components model for enhancing domain-specific 

searching will be dependent on successful indexing.  Successful indexing has two 

requirements: 

• Indexing must be of high quality.  This means that the indexing must faithfully 

apply to the individual documents the schema that has been developed for the 

document collection.  (Here we assume that there is an existing schema that 

reflects the actual document types in the collection and their contents).  

Document classifications must consistently reflect the intent of the schema, 

and instances of the corresponding semantic components must be correctly 

identified in each document.  If indexing does not adequately reflect the 

intended schema and the corresponding expectations of searchers, then using 

semantic components to express queries and retrieve documents is unlikely to 

be useful. 

• Indexing must be feasible with respect to the time and intellectual effort 

required of indexers and with respect to expectations regarding the quality of 

indexing.   Although it might ultimately be possible to automate (or semi-

automate) indexing, we should first study the effects of manual indexing.  We 
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assume that manual indexing will be of higher quality than automated 

indexing, because we also believe that manual indexing will better help us to 

understand the potential benefits and limitations of semantic components than 

would automated indexing of variable and unknown quality.  Furthermore, in 

order to develop automated indexing systems it will be necessary to (1) 

produce a substantial volume of manual indexing in order to more thoroughly 

understand the requirements for an automated indexing system, and (2) have a 

reference standard for assessing the output of automated systems. 

Semantic component indexing is intended to supplement other forms of indexing 

that support topical queries, typically full-text indexing or a combination of full-text 

and keyword indexing.  We decided to compare semantic component indexing to 

keyword indexing for three reasons: 

• Manual keyword indexing is the “gold standard” for supplementing full-text 

indexing and is still being used on a large scale in a variety of settings. 

• There is a long history of keyword indexing, so its nature and limitations are 

well understood.  It provides an established standard for comparing the time 

and intellectual effort required for semantic component indexing, and for 

comparing the quality of indexing. 

• We are studying semantic component indexing in a setting (sundhed.dk, the 

national Danish health portal) where manual keyword indexing already exists.  

Sundhed.dk has already evinced a commitment for investing human resources 

into indexing to improve the quality of search results.  Furthermore, we had 
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access to experienced indexers, allowing us to compare semantic component 

indexing to keyword indexing performed by indexers who provide indexing for 

an established, operational system. 

Our investigation of semantic component indexing consisted of two parts, with the 

goal of assessing the accuracy, consistency, speed, and perceived difficulty of 

semantic component and keyword indexing.  The first investigation compared manual 

semantic component indexing to manual keyword indexing.  Each indexer indexed 

half of the documents using semantic components and half of the documents using 

keywords.  The second investigation is an analysis of the time required for semantic 

component indexing of 371 documents (for use in our searching study) by seven 

indexers who used the prototype indexing application shown in Figure 3.1.  We 

describe both of these investigations in Chapter 7. 

Evaluating the accuracy and consistency of semantic component indexing requires  

appropriate metrics.  Because semantic component indexing is new, we had to 

determine which metrics are appropriate for evaluating the indexing in our study.   In 

Chapter 6 we develop an evaluation framework for semantic component indexing.  We 

also include the evaluation of keyword indexing in the framework to facilitate 

interpreting the accuracy and consistency data for both kinds of indexing.  Direct 

comparison of measurement data is not possible because the different characteristics 

of the two types of indexing require different units of measurement.  We first analyze 

the nature of both indexing tasks and propose a set of criteria that describe the 

desirable properties of evaluation metrics for measuring and comparing the accuracy 
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and consistency of indexing.  We also discuss related tasks and the metrics that are 

commonly used to assess the performance of those tasks.  We then propose a 

framework of evaluation tasks and appropriate metrics for each evaluation.  We use 

the evaluation framework to evaluate the results of the indexing study that we describe 

in Chapter 7. 

 

3.4.4. Using Semantic Components For Retrieval 

Evaluating the usefulness of the semantic component model for searching is 

arguably the most important piece of this work.  Clearly, for the model to attain 

widespread use it needs to provide some benefit to the searcher.  We were interested in 

knowing: 

• Does the use of semantic components facilitate more successful searching? 

• Does the use of semantic components facilitate faster searching? 

• Does the use of semantic components for searching result in better document 

ranking? 

Evaluation of the semantic components approach is challenging.  Information 

retrieval research is often accomplished by using existing test collections that consist 

of a set of documents, a set of queries, and a set of relevance judgments that indicate 

which documents in the collection are relevant to each query.  No existing test 

collection has the minimum requirements for a retrieval study that can evaluate 

semantic components: a defined semantic component schema appropriate to the 

document collection, queries expressed using semantic components, documents with 
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semantic component indexing, and appropriate relevance judgments.  Not only would 

building such a test collection be time-consuming and expensive, but a fixed collection 

would never be entirely satisfactory for evaluating the potential usefulness of the 

semantic components model for information retrieval because using test collections 

neglects the role of the user.  Test collections typically include one or more 

descriptions of the information need (often called the topic) in varying levels of detail 

that are most often used directly as the queries to the IR system.  How well users can 

express information needs using semantic components is an important aspect of the 

semantic components model that needs to be evaluated.  Doing such an evaluation 

requires the participation of study subjects from the target group for which the 

document collection is intended.  If our intent is to leverage the knowledge of domain 

experts about the domain and about the organization of domain-specific documents, 

study subjects must be domain experts.   

Because of these constraints, we chose to conduct an interactive searching study to 

evaluate the potential usefulness of semantic components.  This allowed us to study 

not only whether semantic components could improve document ranking, but also to 

study how searchers used semantic components and whether the searchers found 

semantic components to be a sensible way to express queries. 

To investigate these general questions, we conducted a searching study in which 

thirty Danish family practice physicians searched for documents using two search 

systems.  Both search systems used the documents in sundhed.dk plus the existing 

keyword indexing and full text indexing for each document.   One search system was a 
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basic system without semantic components and the other was a search system identical 

to the first except that it also provided the ability to use semantic components to 

specify the search and to match documents to queries.  We collected both subjective 

and objective data, including data from questionnaires and from log files. 

We evaluated search system performance in the study from two distinct 

perspectives: (1) the user perspective, using only a searcher’s own relevance 

assessments for the documents returned by his or her queries; and (2) the system 

perspective, considering all relevant documents returned by a system, where relevance 

is determined by the reference standard regardless of user assessment.  The two 

perspectives do not necessarily give the same results.  Although good system 

performance may be necessary for good user performance, improved system 

performance does not guarantee improved user performance. 

Hersh et al. [97], and Turpin and Hersh [98], reported experiments from the TREC 

Interactive Track comparing batch (system) and user retrieval evaluations.  They used 

the description part of the interactive topics from previous years of the TREC test 

collection as queries and submitted the queries to an IR system in batch mode, as is 

commonly done in TREC experiments.  They calculated retrieval results for two well-

known methods for calculating the similarity between documents and queries, 

confirming that an improved method outperformed a baseline method.  The 

researchers then created two IR systems with identical interfaces, one using the 

baseline method and one using the improved method for calculating similarity.  They 

randomized the participants in the interactive experiments to use either the baseline or 
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the improved system.  The participants were given new search tasks to perform 

interactively that consisted of identifying documents that contained instances of the 

answers to questions.  After the interactive experiment, the researchers verified that 

the two systems had again performed differently in batch mode when the text of the 

topics (the description of the search problem that was given to the participants) were 

used as queries.  Even when the queries issued by the participants were evaluated 

against the expert relevance judgments in the test collection, the improved system 

outperformed the baseline system.  However, there was no significance difference 

between the task performance (either finding documents with instances of answers to 

questions or finding correct answers to questions) of the users who searched using the 

baseline system and the task performance of users who searched using the improved 

system. 

Turpin and Scholer further investigated this performance disparity by having 

searchers find as many relevant documents as possible in five minutes for each of 50 

queries from another TREC collection.  Unknown to the users, the IR system returned 

hit lists with predetermined levels of MAP, from 55% to 95%, regardless of the query 

entered by the user.  The researchers measured recall (number of documents the 

searcher indicated as being relevant and that were relevant according to the TREC 

relevance judgments / total number of relevant documents in TREC relevance 

judgments) and the time to find the first relevant document.  These measures of 

performance had very little relationship to the known system performance as 

determined by MAP [99]. 
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The papers that reported these studies expressed the experimental results as the 

performance of the human searching participants and measured the searchers’ 

performance using a reference standard that consisted of relevance judgments (judging 

which document contained answers to the questions in the topics) by judges who did 

not participate in the experiment.  Alternatively, the experiment can be viewed as an 

evaluation of the performance of the two systems using the relevance judgments made 

by the searchers.  When the searchers identified documents as containing answers to 

the information needs in the topic descriptions, they were indicating that the 

documents were relevant.  If we view the experiment as an evaluation of system 

performance, using the relevance judgments made by the users, we can conclude that 

the “improved” system does not outperform the baseline system.  These experiments 

highlight the different results one can obtain when user behavior is incorporated into 

the experiment.  Users do not always notice relevant documents and they do not 

always agree with a reference standard as to which documents are relevant.  We 

believe that both system-oriented and user-oriented evaluation perspectives are 

valuable; we evaluated semantic components from both the system-oriented 

perspective and the user-oriented perspective. 

Our experiments involve elements of two approaches to IR experiments recently 

analyzed by Järvelin [48].  He considered the frameworks, models and study designs 

characteristic of two general approaches in IR that he referred to as the “lab IR” 

approach and “Ingwersen’s cognitive IR” approach.  On the one hand, our experiment 

follows the lab IR tradition of comparing two systems under controlled conditions.  
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Although our experiments employed real users, we tried to control as many 

experimental variables as possible, such as by using fixed search scenarios and by 

developing a reference standard of judgments asserting which documents are relevant 

to each scenario.  On the other hand, our experiment also has features more 

characteristic of the cognitive approach.  We designed the scenarios to reflect realistic 

tasks for the searchers of interest (family physicians) and we used a much stricter (and 

more realistic) standard of relevance than the topical relevance used in most lab IR 

studies.  Objects of interest in our study included the documents themselves (we 

studied the use of document classes and the semantic structures within the documents) 

and the information requests (we studied a novel extension to traditional query 

languages).  In addition to analyzing search system performance using the reference 

standard of relevance judgments, we also looked at how well the system helped each 

user find documents that he or she thought were relevant (contained the information 

needed to satisfy the scenario). 

Measuring and interpreting the results in an interactive searching study is, itself, 

challenging.  Test collections have a single statement to represent each topic (although 

the statement can include representations at multiple levels of detail).  IR studies using 

a test collection submit a single query per topic to the IR system and evaluate retrieval 

performance using metrics that assume a single query per topic.  But in real life, 

searchers often submit multiple queries with different representations of an 

information need until they either find information that satisfies the need or until they 

give up.  We refer to the collection of queries submitted while searching to satisfy a 
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particular information need as a session.  Existing IR evaluation metrics are designed 

to evaluate the results of a single query, not the results of an interactive searching 

session.  Previous interactive searching studies have tended to avoid this issue by 

using searching tasks that can be evaluated without considering the performance of 

individual queries that occur in a sequence.  For example, the TREC Interactive Track 

used question-answering tasks that could be evaluated using the fraction of topics for 

which the correct answer was found (for factoid questions) or instance recall and 

instance precision (for questions requiring lists as answers) [100].  The number of 

queries issued, and the quality of document ranking for sequences of queries, were not 

included in the evaluation.  We are interested in supporting search tasks in settings 

where searching time is limited, so we investigated semantic components from both a 

single-query perspective and a session-based perspective.  Our  efforts to evaluate 

semantic components from a session-based perspective exposed interesting research 

problems.  We wanted to evaluate the performance of sequences of queries, combining 

information about document ranking with the iteration number of each query in the 

sequence.  Surprisingly, no metrics existed for evaluating retrieval results from a 

session perspective.  An unanticipated result of this study was a collaboration with Dr. 

Kalervo Järvelin to develop a new session-based metric [44] that is described in 

Chapter 8. 
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3.5. Summary 

At the beginning of this chapter we provided an introduction to semantic 

component indexing.  We then provided a formal description of the semantic 

components model and a description of how semantic component indexing is a 

specialized form of superimposed information.  Lastly, we provided an overview of 

the research activities that comprise the major contributions of this dissertation.  The 

descriptions of how we analyzed document collections to derive semantic component 

schemas (Chapter 4) and our work to map a taxonomy of clinical questions to two 

semantic component schemas (Chapter 5) serve as foundations for the indexing and 

searching studies (Chapters 7 and 8, respectively).  The ability to describe document 

collections with semantic component schemas is a prerequisite for semantic 

component indexing and the ability to express information needs using semantic 

components is a prerequisite for using semantic components for searching.  Finally, a 

prerequisite for studying semantic component indexing and comparing it to keyword 

indexing is an appropriate evaluation framework (Chapter 6). 
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Chapter 4    Developing Semantic Component Schemas 

 

Developing a semantic component schema is the first step in using semantic 

components to find information in a particular document collection.  Because our goal 

is to support the information searching activities of domain experts who have 

specialized knowledge and needs, we develop semantic component schemas that are  

tailored to a particular document collection and to the experts who use the collection.  

A given document collection might serve multiple user groups and a diverse set of 

tasks.  In such a setting, having different schemas for different user groups or task 

types might be useful.  So far, we have only studied describing a given document 

collection with a single schema.  In this chapter we discuss our experiences with 

developing one semantic component schema per collection.  In the final chapter, we 

consider how multiple schemas might be implemented and used, but we save their 

study for future work. 

We discuss and illustrate two approaches to collection analysis and schema 

development through case studies in two domains, medicine and natural resource 

management.  The first method is a bottom-up approach that focuses primarily on 

determining the kinds of documents and the kinds of information that are present in 

the document collection.  The second method is a more top-down, domain-centered 

approach that focuses primarily on the known purposes for the documents and begins 

by identifying any existing document types or templates.  Iterative refinement, based 

on knowledge of user characteristics and common work tasks, can be applied to the 
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initial product of either approach.  Because we developed semantic component 

schemas to support specific experiments that we performed in the context of specific 

user groups (as described in Chapters 5, 7, and 8), we did not try to describe all the 

document classes that can be identified in the document collections we studied. 

In the following sections we first describe some specific experiences with respect 

to developing semantic component schemas, then we discuss some topics related to 

defining and using semantic component schemas.  We discuss our initial analyses of 

medical document collections and of documents related to natural resource 

management in Sections 4.1 and 4.2, respectively.  In Section 4.3 we describe how we 

refined the schemas.  In Section 4.4 we suggest that, in some cases, individual 

documents share properties of multiple document classes and that allowing 

membership in more than one document class might be appropriate.  In Section 4.5 we 

compare semantic component schemas to other knowledge structures, we note 

characteristics of document collections that can facilitate creating schemas, and we 

discuss issues regarding evaluation of semantic component schemas.  We summarize 

in Section 4.6. 

 

4.1. Analyses Of Medical Document Collections 

We developed semantic component schemas for two collections of medical 

documents.  The first collection is the documents (written in Danish) that are hosted 

by sundhed.dk, the Danish health portal.  Our semantic component schema for 

sundhed.dk has undergone several cycles of refinement in the course of using it for 
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three experiments.  The second is a collection of documents written (in English) for 

healthcare professionals.  In this section we describe the processes we used to develop 

the initial schemas for each collection.  In Section 4.3 we discuss iteratively refining 

the sundhed.dk schema. 

 

4.1.1. The Sundhed.dk Documents 

When we began this research, the sundhed.dk collection consisted of nearly 22,000 

documents about health, medicine, and the Danish healthcare system.14  The 

operational portal uses several classification methods to aid in information retrieval.  

The first is a set of document types used to classify documents.  Although sundhed.dk 

has templates for use by authors when they are preparing new documents, 

conformance to the templates is not required and appears to be uncommon.  

Furthermore, the document type labels that are used in document metadata 

(informationskategori) do not have a one-to-one correspondence with the labels 

(informationstype) offered to searchers in the advanced search interface to the portal.  

The informationstype menu in the searching interface allows the searcher to select a 

filter so that only documents of that type will be returned in the search.15  Table 4.1 

shows correspondences between the document types.  We determined the 

correspondences shown in Table 4.1 empirically, by choosing a document type filter 

                                                 
 
 
14 By July 2006 the collection had grown to almost 25,000 documents. 
15We noted on December 17, 2007 that the informationstype filter was no longer available in the 
sundhed.dk advanced search interface. 
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for various searches and then examining the metadata tags in the documents that were 

returned by the search.  Table 4.1 shows the Danish label followed by the English 

translation in parentheses.  One of the labels, forløbsbeskrivelse, is a compound word 

that literally translates as “course description.”  These are documents written for 

healthcare professionals that provide a comprehensive description of a disease, 

 
Table 4.1 Existing document types in sundhed.dk 

Informationstype 
(Document types available as filters in the 

advanced search interface) 

Informationskategori 
(Document types present in document metatags) 

Forløbsbeskrivelser  
(course descriptions) 

Forløbsbeskrivelse (komplet)  
(course description) 

Generel information 
(general information) 

Information  
(information) 

Henvisningsvejledninger  
(referral guidelines) 

Henvisningsvejledning  
(referral guideline) 

Behandling og anvendelse  
(treatment and use) Lægemidler  

(drugs) Præparat- og produktbeskrivelse  
(preparation and product description) 

Nyheder  
(news) 

Nyhed  
(news item) 

Patientinformation (komplet)  
(complete patient information) 

Undersøgelse  
(examination/investigation) 

Behandling  
(treatment) 

Patientinformation  
(patient information) 

Sygdomsbeskrivelse  
(disease/condition description) 

Sundhed og forebyggelse  
(health and prevention) 

Sygdom  
(disease) 

Sundhed og forebyggelse  
(health and prevention) 

Behandling 
(treatment) 
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including its natural history, how it should be diagnosed, and how it should be 

managed at various stages of severity and progression. 

The second classification method used by sundhed.dk is the association of 

keywords with documents.  Many, but not all, of the sundhed.dk documents have 

undergone manual keyword indexing.  Indexers can choose any number of keywords 

from any of three controlled vocabularies.  They can also choose “free” keywords, 

which can be any words or phrases that the indexer deems appropriate.  The three 

controlled vocabularies are: 

• ICPC: The International Classification of Primary Care (ICPC) is used 

primarily by family practitioners and other primary care providers to code 

health care encounters and contains about 700 terms [101].  Sundhed.dk uses a 

Danish translation of the international classification system. 

• ICD-10: The International Classification of Diseases, 10th Revision (ICD-10) is 

used primarily to classify diagnoses and diseases and contains about 20,000 

terms [102].  Sundhed.dk uses a Danish translation of ICD-10. 

• Almen thesaurus:  The Almen Thesaurus was created specifically by 

sundhed.dk to index content that is written for the general public (versus 

healthcare professionals) and contains about 1400 Danish terms.  It is based on 

a classification system used in Danish public libraries. 

For the initial analysis of the sundhed.dk documents, we chose to ignore the 

existing classifications and take a bottom-up approach to understanding what kinds of 

documents and what kinds of information are common in the collection.  To do this, 
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we selected a sample of 72 documents using a modified random sampling approach.  

Sundhed.dk documents have unique identification numbers that are generated at the 

time the document is uploaded into the system.  Uniqueness is ensured by generating 

the id using a combination of document characteristics, including the author’s id and 

the time the document enters the system.  Because the numbers are not generated 

sequentially, the ids in use are only a tiny subset of all possible valid ids.  When we 

performed the initial collection analysis, we had neither copies of the documents nor a 

list of document ids.  We therefore used document searches to select a random sample 

of documents.  We also designed our methodology to ensure that our sample included 

documents intended for both health professionals and for the general public and that 

our sample included documents for all the regions of Denmark. 

To select our sample, we executed 72 searches using the advanced search interface 

for the health portal.  To sample documents for both health professionals and the 

general public, we designed the searches to ensure that at least 20 documents had been 

indexed using at least one term from ICPC and at least 20 documents had been 

indexed using at least one term from the Almen thesaurus.  We obtained the remaining 

documents through the free-text search interface.  Our sampling occurred in two 

stages.  First, we sampled 42 documents, of which ten were indexed with an ICPC 

term, ten were indexed with an Almen thesaurus term, and 22 were chosen from free-

text searches, independent of any indexing terms that might have been assigned.  We 

used the first sample for a preliminary analysis.  We then selected another 30 

documents to supplement and validate our initial analysis, using the same 
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methodology to ensure that ten of the new documents had been indexed with an ICPC 

term, and ten had been indexed with an Almen thesaurus term.  The final ten 

documents were found with free-text searches. 

Selecting documents for the sample required two stages: (1) selecting a search 

term, and (2) selecting a link in the search result.  In the advanced search interface, the 

user can choose to do a free-text search or to begin a search by browsing the top level 

categories of either ICPC or the Almen thesaurus.  Selection of a top-level ICPC 

category yields a result containing all documents indexed with a child term of the 

category selected. The searcher can then either scan the result list, or search within the 

subset of documents just returned.  In other words, selection of a top-level category 

acts as a filter.  Selection of a top-level Almen thesaurus term offers a similar result, 

with the additional option of further narrowing the results by selecting a second-level 

category.  To select the documents indexed with the two controlled vocabularies, we 

chose search terms (categories) by randomly selecting ten categories from the top 

level of each vocabulary.  We selected the top-level terms by assigning numbers to 

each term and using a pseudo-random number generator to generate numbers in the 

appropriate range.  For the free-text searches, we used common, non domain-specific 

search terms, such as the Danish words for and, or, in, and it, to avoid biasing the 

search to particular topics.  (Unlike some search engines, the sundhed.dk search 

engine does not eliminate common or “stop” words from searches.)  After either 

selecting a search term (top-level category) from one of the two controlled 

vocabularies or using one of the ten common words as free-text search terms, we had a 
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result list consisting of links to documents.  The second stage was to select a link, 

which then provided access to a document.  We selected among the list of links by 

using a pseudo-random number generating program to generate a number, i, between 

one and the total number of links in the result.  We then downloaded the document for 

the ith link in the result list. 

Healthcare in Denmark is largely organized by region and many of the sundhed.dk 

documents provide practical information that is applicable only to a particular region.  

For some information needs, only documents for a searcher’s own region are useful, 

so the sundhed.dk advanced search interface provides the option of limiting a search to 

documents applicable to a particular region.  We wanted to ensure a broad 

geographical representation of documents, so we randomly assigned some of the first 

42 searches to be limited by region, independent of the search term used.  For each of 

the 17 regions, we limited one search to documents from that region.16  On the day of 

the study, searches limited to documents from three of the regions all yielded only the 

same single document, contributed by a national organization.  We included that 

document in the sample.  The searches that we limited to each of the other 14 regions 

all yielded multiple documents.  We used the pseudo-random number generating 

program to select one of the search result documents as described above. 

                                                 
 
 
16 Since this work was performed, the regional governments in Denmark have been reorganized.  In 
January 2007 the 17 regions were consolidated into five regions.  
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After selecting the sample, we then read the documents.17  We made a brief outline 

of each document to summarize its content and a created a preliminary list of the types 

of information present.  We did not use a predetermined set of information types but, 

instead, iteratively defined and refined the types based on what we saw in the 

documents.  Three classification axes emerged from the analysis: 

• intended audience (health care professionals versus patients) 

• domain orientation (about clinical issues versus about organizational or 

personnel issues)  

• region specificity (useful primarily for a particular region versus having 

national applicability) 

For most of the health documents, the intended audience was clearly either health 

professionals (such as physicians) or patients.  Documents we judged as written for 

health professionals contained more technical medical terms, contained guidelines 

regarding patient or specimen management, and tended to be written in the passive 

voice (the patient is discharged, the test is performed).  We further subclassified the 

documents for health professionals according to their primary focus:  

• a clinical problem (such as a disease or symptom) 

• a test or procedure (such as a laboratory test)   

                                                 
 
 
17 All the document were written in Danish.  After a month of intensive language study, the author of 
this dissertation was able to translate the documents with the help of two Danish-English dictionaries, 
one general and one medical. 
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Documents we judged as written for patients were more likely to contain lay 

terminology, to contain both technical and nontechnical terms (often listed as 

synonyms), to contain information about self care or when to contact a doctor, to 

contain information about what to expect during a clinical encounter, and to address 

the reader using “du,” the familiar (as opposed to formal) word for you in Danish.  We 

further subdivided these documents according to their primary focus:  

• a clinical problem 

• a test or procedure  

• a health-maintenance or wellness activity (such as smoking-cessation services 

or the benefits of exercise)  

For some documents, the intended audience was less clear, or was not 

differentiated.  Such documents were more likely to be nonclinical or to address public 

health issues instead of the care of an individual. 

We classified documents as clinical if they described such things as diseases, 

symptoms, laboratory tests, diagnostic procedures, and public health issues.  Many of 

the nonclinical documents contained organizational information, such as information 

about personnel or about services offered by a particular hospital or department. 

We classified documents as region-specific if they were unlikely to be useful 

outside the region of origin.  We classified them as general (not region-specific) if at 

least some of the information could be useful outside the region.  Organizational 

information was often limited to a single unit and had no applicability outside the 

associated region.  Many of the clinical documents contained guidelines that were  
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Table 4.2 Semantic components for documents about a clinical problem written for a health 
professional audience 

 
 
created for use within a single region but could be useful to patients or practitioners in 

other regions. 

We performed additional analyses to develop sets of semantic components for two 

groups of documents from the Health Portal: (1) clinical documents about clinical 

problems that were written for health professionals (12 documents) and (2) clinical 

documents describing tests and procedures that were written for patients (four 

documents).  We chose these two groups of documents because they are useful to 

family physicians but support different tasks: informing the physician and assisting 

with patient education.  We were interested in semantic components that could help 

family physicians find useful documents so we did not develop document classes and 

semantic components to exhaustively describe the sundhed.dk document collection. 

Component Description 

Evaluation Tests or procedures for diagnosis, screening, monitoring, or staging 

Therapy Invasive procedures, medications or other therapies 
Management 
guidelines Guidelines for managing the clinical problem 

Referral guidelines 
Guidelines about when a patient should be referred to a specialist, what 
evaluation or therapy should be administered before referral, and what reports 
should accompany the referral 

Prevention Strategies for preventing the clinical problem or for preventing or minimizing 
associated complications 

Risk factors Factors that increase the risk of developing the clinical problem or increase 
the risk of complications 

Prognosis The expected course, or natural history, of the problem 

Etiology Information about causation 
Associated 
conditions 

Information about co-occurring, or complicating conditions, or common 
resulting conditions 

Epidemiology Populations statistics, such as incidence and prevalence 
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Documents in both classes had a readily identifiable primary focus, either a 

clinical problem or a test or procedure.  Occasionally the focus was a group of related 

clinical problems or procedures.  The semantic components we identified for each 

document class are shown in Tables 4.2 and 4.3, respectively.  Structural elements to 

aid identification of components were present in some cases but often were absent.  

Interestingly, two types of information that commonly appear in other medical 

information sources were not present in our sample: information about diagnosis (we 

found guidelines for evaluation but not comprehensive discussions of differential 

diagnosis) and information about physiology and pathophysiology associated with 

clinical problems.  We believe this absence is because sundhed.dk is intended to 

support patient care, especially in the setting where the family practitioner has a 

gatekeeper function with respect to referrals to medical specialists.  Sundhed.dk is not 

intended to serve as a medical textbook with lengthy explanations regarding 

mechanisms of disease. 

 
 
Table 4.3 Semantic components for documents written for patients about a clinical test or procedure 

Component Description 

Preparation How the patient is prepared, or should prepare himself, for a procedure (e.g. 
diet, shaving, medications) 

Practical details For example, where and when to report 
Description of 
procedure What will be done; what should the patient expect 

Risks and 
complications Possible risks, side effects, complications of the procedure 

Aftercare What to expect in terms of hospitalization, discharge, activities, follow up 
appointments 

Where to direct 
questions Who to contact if the patient has questions 
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We found that within each class, neither the presence (or absence) of a particular 

semantic component nor the location of a semantic component within a document was 

predictable.  Instead, the semantic components present in a given document could be 

described as a subset drawn from a limited and predictable superset of semantic 

components.  We also analyzed the relative sizes of the semantic components 

(calculated as the number of characters in each component) across the sample of 12 

documents about clinical problems.   Figure 4.1 shows the cumulative size of each of 

the semantic components in all 12 documents.  This figure provides an interesting 

view of the types of information being communicated and, if the proportions hold 

across all the members of this class of documents, might reflect the purpose and 

information priorities of the portal itself.  Figure 4.2 shows the relative proportion of 

each semantic component in the individual documents.  Clearly, the documents are not 

at all uniform with respect to the types of information they contain. 

 

4.1.2. The UpToDate® Documents 

The second collection we analyzed is from UpToDate® [103], a commercially 

produced resource that is popular with physicians in the United States.  In a previous 

study we used 100 topics (the term for documents in UpToDate®), mostly related to 

obstetrics and gynecology, to investigate concept relations for IR [73].  In the work 

reported here, we initially analyzed 20 of these documents, using a pseudo-random 

number generating program to select the sample, then added five additional documents 

to have a larger sample for one of the document classes. 
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Figure 4.1 Relative size contribution of semantic components in documents about clinical problems 
 
 

We used the same analytic procedure as for the sundhed.dk documents, although 

the UpToDate® documents were not as heterogeneous as the sundhed.dk documents.  

For all 25 documents, we outlined the information in each document using brief 

descriptions of information content in natural language.  As with the sundhed.dk 

documents, we did not base these descriptions on any pre-existing list or classification 

because we wanted to describe the kinds of information that appear in these particular 

documents, not the medical domain in general.  We also identified the primary focus 

of each document and derived document classes from the semantic types of the 

primary foci.  We then considered the kinds of information we found in the documents 

assigned to each class.  We constructed a list of semantic components to represent the 

commonly occurring information types (aspects or facets of the main topic) by  
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Figure 4.2 Proportion of text belonging to semantic components in individual documents about clinical 
problems 
 
 
manually clustering similar natural language descriptions of the information types into 

groups and assigning meaningful labels to each group.  Table 4.4 displays the results 

of our analysis of the UpToDate® document sample.  Each of the three columns 

contains the semantic components for a different document class. 

The semantic components we identified in the two medical document collections 

were similar, but not identical.  Documents about medications were more common in 

UpToDate® than in sundhed.dk.  Sundhed.dk may have fewer documents about drugs 

because sundhed.dk provides links to external resources that contain medication 

information instead of producing their own documents about drugs. 
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Table 4.4 Three document classes and their semantic components in UpToDate® documents 
Clinical Problem Test or Procedure Medication 

Epidemiology General description Pharmacologic category(s) 
Diagnosis and workup Indications Administration 
Pathogenesis Pre-procedure preparation Indications, use and effects 

Treatment Procedure Use in pregnancy and other 
special conditions 

Associated conditions Complications, risks, and 
pitfalls Adverse effects 

Complications and sequelae Post-procedure care Contraindications and 
precautions 

Prevention Outcome Interactions 
Prognosis  Toxicity 
  Cost information 
  Alternatives 
  Brand names 

  Patient education and storage 
instructions 

 

4.2. Leveraging Existing Document Types For Natural Resource Management 

The National Environmental Protection Act (NEPA) mandates processes that 

public land managers must follow for all major projects.  Among those processes are 

the creation of various types of documents to record the decisions and rationale at each 

stage of a decision process for an individual project.  Most residents of the United 

States have heard of Environmental Impact Statements, which are required before 

major land development projects can be undertaken.  Environmental Impact 

Statements are one of the document types specified by NEPA.  A number of other 

document types are also mandated by NEPA.  Documents of the same type, created 

for different projects, contain the same types of information, such as the purpose and 

need for a proposed project and the main issues that are considered when making a 

decision regarding the project. 
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We analyzed two NEPA document types, Environmental Analysis (EA) and 

Decision Notice (DN).  These two types represent a common dichotomy among NEPA 

documents.  The EAs are typically created by a multidisciplinary team, which 

analyzes a variety of issues.  The EA provides a record of their analysis. The EA is 

written for, and used by, the responsible official who makes a land management 

decision.  The DN, on the other hand, is typically written by a single person to 

document a decision for the Forest Service.  The DN provides a synthesis of the 

alternatives considered in the EA and the rationale for choosing a course of action.  

The DN also communicates to the public what decision was made and why a 

particular alternative was chosen. 

Documents of each type are available online at the websites for various national 

forests.  We analyzed a random sample of EAs and DNs from the 140 EAs and 93 

DNs available on the Web for the 13 national forests that are at least partially in the 

state of Oregon.  We read each document, outlined the content, and made a list of the 

information types present.  We did not use a predetermined set of information types 

but instead developed lists of what we found in the documents and then compared our 

findings to documentation available on Forest Service websites.  

The NEPA documents have well-defined types, as we expected.  The documents 

we analyzed followed the format as prescribed in instructions for preparing the 

documents [104] and in templates available online [105], although they varied in 

length and detail depending on the scope of the proposed project.  Location elements 
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(such as ranger district, national forest, county, and state) appear in all the NEPA 

documents. 

For the NEPA documents, the named project is the main focus of the document.  

Like the health documents, the focus is usually evident from the title of the document.  

The NEPA guidelines and document templates specify content elements that are 

essentially semantic components.  The semantic components we identified for EAs 

and DNs, based on the documents we examined and on the templates, are shown in 

Table 4.5 and Table 4.6, respectively.18 

 

 
Table 4.5 Initial semantic components for Environmental Analyses 
Component Description 
Non-discrimination 
statement 

Standard wording of USDA policy and who to contact if violation is 
suspected 

Summary Administrative unit making decision; rationale for action; description of 
proposed action and alternatives; rationale for decision 

Introduction 

For lengthier documents the document structure is described by table of 
contents or in paragraph form; history leading to proposal; purpose and need 
for action; proposed action; decision framework; public involvement; 
significant and non-significant issues and concerns 

Alternatives Description of each alternative, including mitigation; comparison of 
environmental costs and benefits of the alternatives 

Environmental 
consequences 

Description of the bio-physical, social and economic effects raised by public 
as issues or by the Interdisciplinary Team as concerns. 

Interdisciplinary 
team  Names of the team members and their job titles 

Agencies Federal, state and local agencies contacted about this project 

Tribes Tribes contacted; sometimes  including who, how and when 
Individuals and 
groups 

People and groups contacted, sometimes including when and purposes of 
contact 

Appendices Special consultation efforts and analysis efforts. 

 

                                                 
 
 
18 The semantic component names, and their descriptions, were produced by Timothy Tolle. 
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Table 4.6 Initial semantic components for Decision Notices 
Component Description 

Background Purpose and need for action including issues, concerns, and direction 

Decision Actions to be implemented, including mitigation measures, 
site specific maps, drawings 

Alternatives Alternatives considered and environmental effects of each 

Rationale Reasons for decision 
Mitigation 
measures Measures to render effects less, if part of decision 

Public involvement People and groups contacted, specific means to provide public access to 
decision process 

Findings required 
by other laws  

Consistency with forest plan direction, Endangered Species Act (ESA), plans 
by other governments and agencies 

Implementation 
date 

Specific date or conditions which must be met in order to implement the 
action 

Responsible 
official Name and title of person who made decision 

Admin. review Whether or not a party can appeal the decision and how, if the party can 
appeal. 

Contact person Who and how to contact that person responsible for answering questions. 

 
For the NEPA documents, with well-defined document types and instructions 

about what types of information must appear in the documents, using existing 

document types and information types to construct the initial semantic component 

schema was a useful and efficient approach.  However, even for the NEPA documents, 

which were easily described with a semantic component schema that parallels the 

recommended document template, the semantic component schema benefited from a 

refinement based on domain knowledge about common information tasks and about 

the documents themselves. 
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4.3. Iterative Refinement Of Initial Schemas 

We refined our initial semantic component schemas for the sundhed.dk and NEPA 

documents after considering how the semantic components were likely to be useful for 

realistic searching tasks.  First, we used the contents of the documents themselves to 

indicate the kinds of information tasks a semantic component schema should support.  

For example, Figure 4.1 suggests that sundhed.dk probably contains more information 

about how to evaluate and manage patients, and how to refer patients to specialists, 

than information about risk factors and prognosis.  Either sundhed.dk users are less 

likely to want information about risk factors and prognosis, and therefore have not 

requested more information of those types, or they are likely to have become 

accustomed to using other resources to answer questions about risk factors and 

prognosis.  In either case, risk factor and prognosis semantic components are less 

likely to be useful for searching than evaluation and management guidelines  semantic 

components.  For the NEPA documents, some information types that are mandated by 

law contain “boilerplate” language and are identical (or nearly identical) in all 

documents belonging to the class.  For example, DNs must contain information about 

administrative review but the content is stereotypical and similar across documents.  

The words within administrative review instances are unlikely to discriminate one DN 

from other DNs and searchers are unlikely to want to search within an administrative 

review semantic component. 

Next, we consulted domain experts about how users were likely to use semantic 

components.  After discussions with two physician users of sundhed.dk and with three 
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employees, who are involved in the indexing and editorial processes and who have 

extensive contact with users, we concluded that a simple schema, with only a few 

semantic components, would be more useful than a larger set of semantic components.  

We also confirmed our impression regarding the importance of referral guidelines for 

Danish family physicians.  Our consultant from the forestry domain, Dr. Tolle, 

emphasized to us the importance of particular information elements in the NEPA 

documents, such as the specific project that a document relates to and the issues being 

analyzed. 

Table 4.7 shows a refined version of the semantic components for sundhed.dk 

documents about clinical problems that we used in the indexing study described in 

Chapter 7.  We consolidated treatment and management guidelines into a single 

management component.  We also consolidated the semantic components that we 

believed would be less useful into a single semantic component, about. 

Tables 4.8 and 4.9 show revised semantic components for DNs and EAs, 

respectively.  In Table 4.8 we show the original and revised semantic component sets 

for DNs side-by-side for easier comparison.  Project name and location are new 

semantic components.  Because its anticipated usefulness is so high, issues has been 

made a distinct semantic component instead of including it in background.  Purpose 

 
Table 4.7 Document classes and semantic components used in the indexing study 

Document Type Semantic Components 
Evaluation: How to diagnose or evaluate the problem 
Management: How to treat, manage or control the problem 
Referral: How to refer a patient with the problem to a specialist or 
special service 

Documents about a Clinical 
Problem or Condition 

About: About the problem 
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Table 4.8 Semantic components for Decision Notices, initial (left) and revised (right) 

 
and need has both a narrower specification and a more descriptive name than 

background where it was formerly subsumed.  Findings required by other laws and 

administrative review have been eliminated because they contain stereotypical text 

and are unlikely to be useful. 

 

 

Component Description Component Description 

Project name Official name of proposed 
project Background 

Purpose and need for action 
including issues, concerns, 
and direction Location Location of proposed 

project 

Decision 

Actions to be implemented, 
including mitigation 
measures, site specific maps, 
drawings 

Purpose and 
need Purpose and need for action 

Decision Actions to be implemented 
Alternatives 

Alternatives considered and 
environmental effects of 
each 

Rationale Reasons for decision 
Rationale Reasons for decision 

Mitigation 
measures 

Measures to render effects 
less, if part of decision 

Mitigation 
measures 

Measures to render effects 
less, if part of decision 

Public 
involvement 

People and groups contacted, 
specific means to provide 
public access to decision 
process 

Issues 
Significant issues 
considered in making the 
decision 

Findings 
required by other 
laws  

Consistency with forest plan 
direction, ESA, plans by 
other governments and 
agencies 

Public 
involvement 

People and groups 
contacted, specific means to 
provide public access to 
decision process 

Implementation 
date 

Specific date or conditions 
which must be met in order 
to implement the action 

Date Date the decision notice was 
signed 

Responsible 
official 

Name and title of person 
who made decision 

Responsible 
official 

Name and title of person 
who made the decision 

Admin. review 
Whether or not a party can 
appeal the decision and how, 
if the party can appeal. 

Contact person 
Who and how to contact that 
person responsible for 
answering questions. 
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Table 4.9 Revised semantic components for Environmental Analyses 
Component Description 

Administrative unit The administrative unit responsible for making the decision 

Year Year the EA is completed 

Project name Official name of proposed project 

Purpose and need Purpose and need for action 

Issues Significant issues considered in making the decision 

Proposed action Description of the proposed action, such as activities, monitoring, maps, and 
mitigation 

Decision 
framework How the decision was made 

Public involvement People and groups contacted, specific means to provide public access to decision 
process 

 
 

Although we did not formally assess the semantic component schemas for NEPA 

documents, three members of the research team performed semantic component 

indexing for seven DN documents using the revised semantic component schema.  Our 

impression was that the schema was appropriate for the documents and easy to 

understand.  Some semantic components were easy to identify, especially when their 

location corresponded to structural elements (Section headings) with the same, or 

similar, names.  Other components, such as issues, appeared in multiple locations in 

the documents. 

We encountered some interesting issues in the indexing study that led to yet 

another refinement of the semantic component schema for sundhed.dk before the 

searching study.  Table 4.10 shows the schema for three document classes as the 

schema appeared in the indexing study and in the searching study.  (The complete 

schema that was used in the searching study appears in Table 8.1).  Although we 

provided the indexers with descriptions and examples of each document class, and 
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Table 4.10 Document classes and semantic components used in the two user studies 
Indexing study Searching study 
Document 
class name 

Semantic Components Document 
class name 

Semantic Components 

Evaluation: How to 
diagnose or evaluate the 
problem 

Diagnosticering 
(diagnosis, evaluation) 

Management: How to treat, 
manage or control the 
problem 

Behandling 
(treatment) 

Referral: How to refer a 
patient with the problem to 
a specialist or special 
service 

Henvisning 
(referral) 

Clinical 
Problem 

About: About the problem 

  
 

Klinisk 
problem 
(Clinical 
problem) 

Generel information 
(general information) 

Preparation: How to 
prepare for the procedure 

 

Practical: Practical details Praktisk information 
(practical information) 

Description: Description of 
the procedure 

Generel information 
(general information) 

Risks: Risks of the 
procedure 

Risici 
(risks) 

Aftercare: What to expect 
after the procedure Efterbehandling 

(aftercare) 

 
 

Henvisning 
(referral) 

Procedure 

 

 

Klinisk 
Metode 
(Clinical 
method) 

Forventet resultat 
(expected results) 

Service or right: 
Information about the 
service or right 

Generel information 
(general information) 

Inclusion criteria: The 
indication or conditions that 
the patient should fulfill to 
get the service 

 

Sequence: the course of 
events, the sequence of 
actions 

 

 Praktisk information 
(practical information) 

Services 

 

 Services 
(services) 

Henvisning 
(referral) 

 
 
also of each semantic component for a given class, we nevertheless encountered some 

confusion about what kinds of documents belong in each class.  The information that 
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was given to the indexing study participants about the clinical problem class and its 

semantic components is shown in Figures 4.3 and 4.4, respectively.  It appeared that, 

despite the explanations and examples, the indexers tended to interpret the “meaning” 

of the document classes based on the class names, and that at least some of the 

confusion was related to terminology.  In Chapter 7 we discuss in some detail why the 

name “procedure” might have caused problems in the indexing study.  Briefly, both 

translation (between English and Danish) and different word senses (common usage 

versus medical jargon) might have contributed to confusion.  For the searching study, 

we supplied Danish versions of both the semantic component schema and the 

accompanying descriptions and examples to the participants.  We also used the name 

“clinical method” instead of “procedure.”  In addition, we tried to reduce the cognitive 

load on the searchers by using the same name for similar types of information in 

different classes, such as “general information”, “practical information”, and 

“referral”.  We did not study whether such use of the same names actually helped the 

searchers.  It is possible that using the same name for information that might have 

subtle differences is actually confusing.  Clearly the names for document classes and 

 
Document Type Short Name Description 
Documents about a 
Clinical Problem or 
Condition 

Clinical 
problem 

Documents that are primarily about a particular clinical 
problem such as a disease, a symptom, or other clinical 
condition.  Examples: 
- a normal condition, such as pregnancy 
- an abnormal condition, such as malnutrition or injury 
- a disease, such as diabetes 
- a group of related diseases or problems, such as knee 
injuries (could include information about several specific 
injuries) 
- a symptom, such as chest pain 

Figure 4.3 Information about the Clinical Problem class, as supplied to indexing study participants 
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Documents about a Clinical Problem or Condition 
Name Description 

How to diagnose or evaluate the problem. Evaluation 

Information about how to evaluate a patient who has, or might have, the clinical 
problem.  Examples: 
- how to diagnose the disease 
- how to determine its severity or clinical stage 
- the differential diagnosis of a symptom (what diseases could cause this symptom) 
- what screening tests are appropriate 
- what tests should be performed in patients who have this problem. 
How to manage or control the problem. Management 
Information about how to treat or manage a patient who has the clinical problem.  
Examples: 
- formal disease management guidelines  
- how to prevent complications 
- how to reduce the severity or impact of the disease on the patient 
- how to monitor progression of a disease 
- recommended diet, education, or counseling 
- what medications or procedures are appropriate 
- what doses of a medications to give 
How to refer a patient with the problem to a specialist or special service. Referral 

 Information about how and when the family practitioner should refer a patient for 
specialist care.  Examples: 
- criteria for referral (such as severity of disease, presence of certain complications) 
- how to make a referral (what number to call, where to mail documents)  
- what tests to do before the referral 
- what records to send to the specialist or special clinic 
About the problem. About 

 General information about the condition, not necessarily for care of a particular 
patient.  Examples: 
- natural history of a disease if not treated 
- the usual clinical course of patients with this problem 
- population statistics about how frequently the problem occurs 
- common co-occurring conditions or complications of the problem 
- etiology (causation) of the disease or condition. 

Figure 4.4 Information supplied to the indexing study participants about semantic components for the 
Clinical Problems document class 
 
semantic components are important, but we do not yet know what the best naming 

strategy is. 

 

4.4. Multiple Schemas and Multiple Indexing Instances 

We have iteratively refined some of the schemas as described above, but during 

any particular use of the schema, for either indexing or searching, we have allowed a 
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document collection to have only a single schema.  Similarly, for the mapping study 

(Chapter 5) and the searching study (Chapter 8) we assumed that each document 

would have at most a single indexing instance.  When we formalized the semantic 

components model (Chapter 3) we ensured that the definitions do not preclude 

multiple schemas and multiple indexing instances.  We did so because we can imagine 

that a given document collection might be useful for a diverse set of information 

searching tasks or for a diverse set of users.  It is possible that describing a document 

collection with more than one schema might be more useful than creating a single 

schema for all searches.  Furthermore, it is possible that some documents have 

elements of more than one document class, and should be indexed accordingly, with 

multiple class labels and with instances of semantic components from multiple classes. 

We have not yet investigated allowing multiple schemas and multiple indexing 

instances.  We discuss some possibilities for future work along such lines in Chapter 

9.  For now, we offer one example to illustrate a document that might benefit from 

being indexed as a member of two document classes.  One of the documents that was 

indexed for the searching study was titled “B-vitaminer: Behandling ved 

mangelsygdomme” (B-vitamins: Treatment of deficiency conditions).  The document 

has several sections that each address who should have extra amounts of a particular B 

vitamin.  Each section has two or three paragraphs that discuss the conditions resulting 

from deficiency of that vitamin (such as beriberi as a result of vitamin B-1 deficiency), 

common causes of such deficiency (such as chronic alcoholism), symptoms (such as 

encephalopathy), and treatment with supplemental vitamins.  Is this a document about 
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clinical conditions (vitamin deficiency syndromes)?  The document has information 

about evaluation and treatment.  Or, is it a document about medications (B-vitamins)?  

The document has information about indications and dosage.  One of the scenarios in 

the searching study concerns giving supplemental folic acid (a B vitamin) to pregnant 

women.  Searches for that scenario included queries that used semantic components 

from the clinical problem class and queries that used semantic components from the 

medication class.  Allowing the document to have two indexing instances, one that 

considered the document to be about clinical problems and one that considered the 

document to be about medications, might have been useful to the searchers. 

 

4.5. Discussion 

Semantic component schemas share features with other knowledge organization 

structures.  Document class names can be thought of as keywords that describe 

something about the document.  Assigning keywords from controlled vocabularies is a 

method of classifying documents that allows documents to belong to multiple classes 

simultaneously (see Chapter 6).  Although we define semantic component indexing as 

associating semantic component names with segments of documents (subdocuments), 

the semantic component names could be treated as keyword assignments that describe 

some aspect of document content.  Semantic component schemas can be thought of as 

small hierarchical controlled vocabularies, although the vocabulary terms have 

somewhat different uses in the semantic component model than simply indicating 

what the document is about.  A semantic component schema is not a thesaurus; it lacks 
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the broader term/narrower term, synonymy, and related term relationships that are 

characteristic of thesauri [106]. 

A semantic component schema also is not an ontology, although it shares some 

features of ontologies (in the computer science sense, not the philosophical sense, of 

the word).  Like an ontology, it provides some abstractions (document classes and 

semantic components) for representing a domain.  However, a semantic component 

schema does not represent the entire domain, only a view of the domain as it is 

represented in a particular document collection.  The domain representation is 

impoverished, representing only a small subset of relationships in the domain.  It 

represents only those relationships that the schema creator deemed as being both 

sufficiently important to searchers and sufficiently well-represented in the document 

collection.  Furthermore, relationships are represented by the schema in an imprecise 

and indirect fashion compared to an ontology.  The presence of a treatment semantic 

component in a class of documents about diseases suggests that the domain 

represented by the collection has an abstract relationship treats (X, Disease) where X 

is a variable.  Concrete relationships in the domain are represented using a 

combination of words in document text, semantic component instances, document 

classifications, and human inferences about the text.  For example, the relationship 

treats (penicillin, pneumonia) could be represented by the word “penicillin” appearing 

in a treatment semantic component of a document about a clinical problem.  That the 

problem being treated is pneumonia is represented by words in the text (and possibly 

the document title) that indicate that the document is about pneumonia.  However, the 
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final determination that the document actually asserts that penicillin treats pneumonia 

requires human interpretation of the text. 

Semantic component schemas are a type of discourse model for the classes of 

documents in the collection being described.  Based on our experiences, we identified 

two characteristics of document collections that facilitate creation of a semantic 

component schema and that are likely to contribute to the usefulness of semantic 

components for searching.  These two characteristics correspond to two of the 

approaches to discourse models that we identified in Chapter 2, the domain-specific 

approach and the superstructure approach. 

The first characteristic is homogeneity of a collection, with respect to having 

documents that pertain to the same well-defined domain.  If the main topics of most 

documents can be identified as instances of common entities in the domain (such as a 

disease or a therapeutic procedure in medicine or a designated project in natural 

resource management), the documents are more likely to share an identifiable set of 

information types from which one can select a set of useful semantic components.  

Semantically homogeneous document collections are well-suited to a domain-specific 

approach to developing a discourse model.  A collection that covers multiple domains 

might also be amenable to description with a semantic component schema if multiple 

subcollections, each pertaining to a domain, are readily identifiable and the 

subcollections are relatively homogeneous. 

The second characteristic is pre-existing structures.  Well-defined document types, 

such as those specified by NEPA, make identifying document classes easier because 
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they share a common superstructure.  Templates, manuals that prescribe how to 

prepare instances of various document types, or even customs to which authors tend to 

conform, can facilitate identifying candidate semantic components.  Common 

structural elements within documents of the same class, such as identical section 

headings, can be useful if they correspond to the identified semantic components.   

Both characteristics, homogeneity of domain and pre-existing structures, are more 

likely to be found if documents are created for a particular collection, usually by the 

same organization or team of authors, or if the documents are explicitly selected for 

inclusion in the collection by human intellectual effort.  The same characteristics that 

facilitate schema creation are also likely to facilitate semantic component indexing, 

whether manual or automated.  Although we believe these characteristics assist the 

process of semantic component schema creation, they are not necessarily required.  

Additional work would be required to quantitatively assess the importance of these 

characteristics or to determine how heterogeneous a collection can be and still benefit 

from semantic components. 

Validation of the correctness of a semantic component schema is not a realistic 

goal.  A semantic component schema is not intended to provide a sound or complete 

representation of a domain.  Instead, a semantic component schema is intended to help 

searchers to find documents more easily in a particular document collection.  

Therefore, we suggest three methods for assessing a semantic component schema. 

The first method is an experimental evaluation of the relative usefulness of a 

semantic component schema.  An empirical study could determine if using the schema 



www.manaraa.com

 

126

for searching is better than no schema.  A study could also determine if using the 

schema of interest is better than using another schema.  However, empirical studies are 

likely to be quite expensive.  Each document collection would need a tailored set of 

information needs and corresponding relevance judgments.  In addition, the 

documents would have to be indexed using each new schema to be assessed. 

The second method is to compare it to other classifications or knowledge 

structures in the domain.  Because semantic component schemas are collection-

specific, we do not expect them to be identical to knowledge structures intended to 

represent the entire domain.  But informal comparisons can provide qualitative 

answers to the question “Does the schema make sense?”. 

The third method is to assess the reliability of indexing using the schema.  If 

different indexers are consistent in the way they apply a schema to documents in a 

collection, resulting in a high inter-indexer consistency, then the schema is likely to be 

a good reflection of the documents in the collection.  Studies of indexing consistency 

could compare both alternative schemas and alternative names for semantic 

components in a given schema.  

For example, in Chapter 8 we provide a detailed description of an experiment that 

compared searching using the schema for sundhed.dk documents to searching without 

a schema.  It is easy to imagine similar experiments in which both experimental 

systems used semantic components, but with different schemas.  However, doing such 

experiments seems impractical, especially if the experiment uses manual semantic 

component indexing and interactive searching.  To confirm that the schema is 
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reasonable, we note that the semantic components we identified are compatible with 

other knowledge structures in the medical domain, such as: qualifiers available in 

MeSH for precoordinated indexing and retrieval of medical journal articles [72]; 

relationships in the Unified Medical Language System (UMLS) semantic network 

[107]; relationships expressed in generic questions appearing in a taxonomy of clinical 

questions collected during observational studies of physicians [8, 9]; a list of query 

types for which search expressions were developed to filter retrieval of medical 

journal articles to those articles that report research using sound methodologies [108]; 

and information about drugs that is provided in the Physicians Desk Reference (PDR), 

which contains Food and Drug Administration (FDA)-approved labeling and other 

prescription information provided by manufacturers [109]. 

 

4.6. Summary 

In this chapter we addressed two related questions: 

• What methods are available and useful for analyzing a document collection for 

the purpose of identifying useful document classes and semantic components? 

• What lessons can be learned from preliminary efforts to analyze a collection 

and use the analysis? 

We proposed two methods of identifying the document classes and semantic 

components that comprise a semantic component schema: (1) document sampling to 

analyze the contents of a document collection, and (2) reusing existing document types 

and templates or prescriptions for document creation.  We discussed these two 
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methods in the context of our experiences with creating semantic component schemas 

in two different domains.  We also discussed how, and why, we refined the schemas 

and some lessons we learned in the process.  We concluded that describing document 

collections with semantic component schemas is feasible, but not necessarily easy and 

straightforward.  We found that feedback from potential users of the schema was 

valuable and that careful consideration should be given to the names assigned to 

document classes and semantic components in a schema.  We also furnished an 

example to illustrate why allowing a document to belong to multiple classes might be 

useful. 

In addition, we compared semantic component schemas to other domain-centered 

knowledge structures, observing that the elements of a schema comprise a simple 

controlled vocabulary and noting similarities and differences with thesauri and 

ontologies.  We discussed how certain characteristics of a document collection can 

assist in schema creation and might predict the effectiveness of semantic components 

for searching the collection.  Finally, we considered how a semantic component 

schema can be evaluated, noting some challenges and limitations to trying to validate 

a schema for a particular document collection. 
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Chapter 5    Expressing Information Needs with Semantic Components 

 

Representing information needs with semantic components is an important part of 

using the semantic components model to retrieve documents.  As a preliminary 

assessment of the feasibility of using semantic components to assist searching, we 

investigated using the semantic components model to represent information needs in a 

domain (clinical medicine) using the elements of semantic component schemas for 

two appropriate document collections.  We manually mapped generic questions from a 

taxonomy of clinical questions to the document collections using the document classes 

and semantic components that we identified for each collection. 

 

5.1. Methods 

 In this section we briefly review the two document collections, sundhed.dk and 

UpToDate®, and the schemas that we developed using the semantic components 

model.  Then we describe the taxonomy of clinical questions and how we mapped the 

categories in the taxonomy to semantic components in the schemas. 

 

5.1.1. Document Analysis 

In our initial analysis of the sundhed.dk documents, we classified 72 documents 

according to intended audience (health professionals or patients) and orientation 

(clinical or nonclinical).  For this study, because we were focused on the clinical 

information needs of healthcare professionals, we considered only the 25 documents 
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that we judged to be about clinical content and to be written primarily for healthcare 

professionals.  From these documents, we identified four classes according to the 

semantic type of the primary topic of the document: clinical problem (such as a 

disease or symptom), test or procedure (such as a laboratory test or diagnostic 

procedure), drug (or class of drugs), and clinical service (such as information about a 

local specialty clinic).  In the UpToDate® documents we also defined four document 

classes according to primary focus: clinical problem, test or procedure, drug, and 

normal processes. 

Table 5.1 summarizes the document classes in the schemas for the two document 

collections.  Table 5.2 shows the semantic components for documents about clinical 

problems in the sundhed.dk schema.  Table 5.3 shows a list of semantic components 

for three UpToDate® document classes.  Note that the tables in this chapter reflect the 

versions of the schemas that we used for this mapping study.  Tables 5.2 and 5.3 also 

show which semantic components we used when mapping the categories in the 

question taxonomy to the two document collections.  An x indicates that the semantic 

component was mapped to at least one clinical question category in the taxonomy. 

  

5.1.2. The Clinical Questions Taxonomy 

Ely and colleagues collected 1101 questions from Iowa family practice physicians and 

developed a classification scheme [8].  In a subsequent study, 295 questions collected 

from Oregon physicians were added and used to modify the taxonomy [9].  The 

researchers grouped questions with a similar structure and created generic questions 
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Table 5.1 Document classes in the two schemas used for the mapping study 

 
 
 
Table 5.2 Semantic components for documents about a clinical problem in the schema for sundhed.dk 
used in the mapping study 

Component Description Mapped 

Evaluation Tests or procedures for diagnosis, screening, monitoring, or 
staging x 

Therapy Invasive procedures, medications or other therapies x 

Management 
guidelines Guidelines for managing the clinical problem x 

Referral 
guidelines 

Guidelines about when a patient should be referred to a 
specialist, what evaluation or therapy should be administered 
before referral, and what reports should accompany the 
referral 

x 

Prevention Strategies for preventing the clinical problem or for preventing 
or minimizing associated complications x 

Risk factors Factors that increase the risk of developing the clinical 
problem or increase the risk of complications x 

Prognosis The expected course, or natural history, of the problem  

Etiology Information about causation x 

Associated 
conditions 

Information about co-occurring, or complicating conditions, or 
common resulting conditions x 

Epidemiology Populations statistics such as incidence and prevalence x 

Class Description 
Sundhed.dk 

Clinical 
problem About a disease, condition, or finding 

Test or 
procedure About a laboratory test, or a significant diagnostic or therapeutic procedure 

Drug About a drug, or class of drugs, with respect to treating one or more clinical 
problems 

Clinical service About a clinical service, such as a specialty clinic 
UpToDate 

Clinical 
problem About a disease, condition, or finding 

Test or 
procedure About a laboratory test, or a significant diagnostic or therapeutic procedure 

Drug About a drug, or class of drugs, with respect to treating one or more clinical 
problems 

Normal 
processes 

About normal bodily processes, such as the menstrual cycle, or maternal 
adaptations to pregnancy 
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Table 5.3 Three document classes and their semantic components in the UpToDate® schema 
Clinical Problem Test or Procedure Medication 

Epidemiology x General description  Pharmacologic 
category(s)  

Diagnosis and workup x Indications x Administration x 

Pathogenesis x Pre-procedure preparation x Indications, use and 
effects x 

Treatment x Procedure x 
Use in pregnancy 
and other special 
conditions 

x 

Associated conditions x Complications, risks, and 
pitfalls x Adverse effects x 

Complications and 
sequelae x Post-procedure care  Contraindications 

and precautions x 

Prevention x Outcome x Interactions x 
Prognosis x   Toxicity  
    Cost information x 
    Alternatives  
    Brand names  

    
Patient education 
and storage 
instructions 

 

 
 
 
that could represent multiple questions asking for the same type of information, using 

one or two variables to represent specific concepts in the original questions.  For 

example, questions about drug dosage can be represented by the generic question 

“What is the dose of drug x?” where x is a variable representing a drug name.  

Questions about which drug to use can be represented by the generic question “What 

is the drug of choice for condition x?”  The investigators further categorized the 

resulting generic questions into a four-level hierarchy that reflects the type of 

information being sought.  In addition to listing the generic questions in each category, 

the taxonomy includes the number of questions, from the original 1396 questions 

asked by physicians, that were abstracted into the generic questions in each category 

of the taxonomy. 
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The resulting hierarchical taxonomy contains 64 question categories, each based 

on one or more related generic questions.  The top levels of the taxonomy are: 

diagnosis (18 categories, 525 original questions), treatment (23 categories, 611 

original questions), management (not specifying diagnostic or therapeutic) (8 

categories, 126 original questions), epidemiology (5 categories, 82 original questions), 

nonclinical (9 categories, 52 original questions), and unclassified (1 category, 0 

questions) [9].  For this study, we only considered the categories in the first four top 

levels because we were interested in mapping clinical questions to document 

collections that provide clinical information.  We also eliminated the four “not 

elsewhere classified” categories (one in each top level of the hierarchy) since there 

was no information to use for mapping the questions.  Instead of listing generic 

questions, the “not elsewhere classified” categories state that “generic type varies.”  

The comment section describes the categories as “In a broad sense, the question is 

about X, but it does not fit any other diagnosis category” where X is the name of the 

top level category, such as “diagnosis” or “treatment.”  Eliminating the nonclinical, 

unclassified, and “not elsewhere classified” categories left 50 categories. 

 

5.1.3. Mapping Questions to Semantic Components 

For each category, we (manually) tried to identify one or more combinations of a 

document class plus a semantic component associated with that class in each 

collection that would be reasonable to express the types of questions represented by 

the category.  We used both the generic questions and the comments associated with 
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each category to understand the intent and scope of each category in the taxonomy.  

For example, the first category in the question taxonomy is about diagnosis related to 

a clinical finding.  The comment describing the category states “you start with a 

finding and you want to know what condition is causing it.  You know what the 

finding is, you don’t know what the condition is.”  The generic questions associated 

with this category include “What is the cause of symptom x?” and “What is the 

likelihood that symptom x is coming from condition y?”  One possible way to search 

for answers to questions in this category is to look for documents about symptom x that 

contain a discussion of the causes of symptom x.  In the context of the semantic 

components model, we would do a topical search for documents about symptom x and 

refine the search by looking for documents in the class documents about clinical 

problems that contain the semantic component etiology (sundhed.dk) or pathogenesis 

(UpToDate®).  We refer to this selection of an appropriate document class and an 

appropriate semantic component as a mapping.  For this category, the generic question 

that asks about condition y as a cause of symptom x can also be represented by a search 

for documents about condition y that discuss symptom x as a manifestation of 

condition y.  We could search for documents about clinical problems that are about 

condition y that also contain the term for symptom x in the evaluation (sundhed.dk) or 

diagnosis & workup (UpToDate®) semantic component.  We considered a mapping 

successful if at least one combination  of document class and semantic component 

represented the types of generic questions associated with the category. 
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5.2. Results 

For sundhed.dk, we mapped 34/50 (68%) of the question categories, and for 

UpToDate®, we mapped 36/50 (72%) of the question categories.  The taxonomy also 

includes the number of original questions (asked by physicians during the 

observational studies) that the taxonomy authors assigned to each category, so we can 

calculate the proportion of actual questions that belonged to the mapped and 

unmapped categories.  Based on the question frequency for the categories, over 92% 

of questions could be mapped for both collections (after eliminating the nonclinical 

and nonspecific questions as noted above). 

If all question categories in the taxonomy are considered, our mappings covered 

34/64 (53%) and 36/64 (56%) of the categories.  If we eliminate just the category that 

had no questions (unclassified), our mappings covered 34/63 (54%) and 36/63 (57%) 

of the categories.  Based on question frequency, the coverage is over 88% of all 

questions for both resources. 

Some categories contained multiple related generic questions, suggesting multiple 

related mappings.  For example, Category 2.1.2.1 contains ten generic questions, 

including: “What are the indications for drug x?” and “Is drug x (or drug class x) 

indicated in situation y or for condition y?”  In the UpToDate® collection, we mapped 

this category to the class of documents about drugs.  The first question, What are the 

indications for drug x? could be mapped to the semantic component indications, use 

& effects in documents about drug x.  The second question, Is drug x (or drug class x) 

indicated in situation y or for condition y? could be mapped either to documents about 
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drug x in which condition y appears in the indications, use & effects component, or to 

documents about condition y in which drug x appears in the therapy component.  The 

second question is an example of what we refer to as a question that can be mapped in 

two directions, where either 

• x is the main topic and y is searched for in text about an aspect of x 

• y is the main topic and x is searched for in text about an aspect of y 

Nineteen categories contained at least one generic question that could be mapped 

in two directions.  These examples (which can also be represented as full relations) 

highlight the importance of identifying the topic of the search as well as the semantic 

component of interest. 

Table 5.4 shows our mappings for five categories.  The first three categories 

shown are the three categories that were most frequent in Ely’s study.  The fourth 

category is a category with a single type of mapping.  The fifth category shown is an 

example of a category for which we did not identify a mapping.  We abbreviated the 

category description and the example generic questions from the original taxonomy 

(as presented in the supplement [9] to the paper) for presentation in the table.  The 

variables x and y indicate values that should correspond to the focus of the document 

(for instances of the document classes in the Doc. Class columns) or that should be 

present in instances of the semantic component (in the Semantic Component 

columns).  When no variable is present, then the question does not specify a value for 

document focus or content of the semantic component instance.  Variables shown in  
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         Table 5.4  Example mappings (created manually) for five question categories from the clinical questions taxonomy. 
 
 
 

Code Freq 
(%) 

Category 
Description 

Example generic questions 
(from supplement to paper)

sundhed.dk 
Doc. Class 

sundhed.dk 
Semantic 

Component 

UTD Doc. 
Class 

UTD Semantic 
Component 

Drug (x) target pop. (y)

Drug (x) benefits (y) 
Drug (x) indications, use, and 

effects (y) 2.1.2.1 10.7 

Treatment: drug 
prescribing: efficacy/ 
indications/drug of 
choice: treatment 

Is drug x (or drug class x) 
indicated in situation y or for 
condition y? OR What are the 
indications for drug x? OR … Problem (y) treatment (x) Problem (y) therapy (x) 

Problem (x) etiology (y) Problem (x) pathogenesis (y) 

1.1.1.1 8.2 

Diagnosis: cause/ 
interpretation of 
clinical finding: 
symptom 

What is the cause of symptom 
x? OR What is the differential 
diagnosis of symptom x? OR 
Could symptom x be condition 
y or be a result of condition y? 
OR … 

Problem (y) evaluation (x) Problem (y) diagnosis & workup (x) 

Test/proc. 
(x) indications(y) Test/proc. (x) indications (y) 

1.3.1.1 8.0 
Diagnosis: test: 
indications/ 
efficacy 

Is test x indicated in situation 
y? OR What test (or 
evaluation, or work up), if any, 
is indicated/ appropriate in 
situation y or with clinical 
findings x1, x2, . . , xn? OR …

Problem (y) evaluation (x) Problem (y) diagnosis & workup (x) 

4.1.1.1 1.0 
Epidemiology: 
prevalence/ 
incidence 

What is the incidence/ 
prevalence of condition y (in 
situation z)? OR Why is the 
incidence/ prevalence of 
condition y changing?  

Problem y epidemiology Problem y epidemiology 

1.4.1.1 0.6 

Diagnosis: name 
finding: body part on 
physical exam or 
imaging study 

What is the name of this body 
part? OR What is the anatomy 
here? 

NO MAPPING NO MAPPING 
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parentheses indicate the presence of multiple generic questions that correspond to 

mappings with and without variables. 

 

5.3. Analysis 

We successfully mapped a substantial majority of questions to document classes 

and semantic components in both collections.  Based on reported frequencies in the 

taxonomy, we mapped over 92% of the questions we considered.  We report coverage 

based on question frequency to illustrate that the most common types of questions map 

easily in our model.  This does not mean that the answers to all instances of the 

questions can be found, only that one or more semantic components can easily be 

identified as most likely to satisfy the information need.  For example, the generic 

question “What is the preparation for test x?” can be mapped to documents about a 

test or procedure and the semantic component pre-procedure preparation, but the 

specific question “What is the preparation for a sigmoidoscopy?”, in which the 

variable x is instantiated, cannot be answered if the collection does not contain a 

document about sigmoidoscopy. 

Table 5.5 shows the frequencies of the categories for which we found only partial 

or possible  mappings or that we did not map at all.  We classified several categories 

as possibly or partially mapped for two main reasons.  Either the question lacked 

sufficient detail or we thought only some questions in the category could be mapped.  

An example of a question with insufficient detail is the generic question “Why did 
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Table 5.5 Analysis of unsuccessful, or partially successful mappings. 

 
provider x treat the patient this way?”.  This question could represent either a question 

with a clear scientific answer or a rhetorical question that is not answerable from 

medical literature.  An example of a category for which we thought some of the 

questions might be answerable in the collection, and were thus mapped, and other 

questions might not be answerable and were not mapped is Category 2.1.12.1: 

treatment – drug prescribing – availability that has two generic questions.  An answer 

to the generic question “Is drug x available over-the-counter?” might appear in an 

administration semantic component but the answer to the other question in the same 

category “Is drug x available yet?” probably would not appear in the administration 

component. 

The two questions we did not map because there was no semantic component 

suggested in the question were the two general questions: “What is condition x?” and 

“What is test x?”.  These are the only “aboutness” questions, and are examples of the 

type of questions that are usually answered well by simple topical queries in existing 

systems. 

We did not map the remaining questions (for “other reasons”) because the two 

document collections were not appropriate for these questions.  Some were name-

finding questions, such as “What is the name of that condition?”.  A clever query 

Sundhed.dk UpToDate Results # categories % questions # categories % questions 
Possibly/partially mapped 5 2.1 5 2.8 
Not mapped: no semantic 
component in the question 2 0.4 2 0.4 

Not mapped: other reasons 9 5.1 7 4.1 
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might remind the user of a name, but we could not assume that a searcher might think 

of such a query and we did not try to predict how it might be phrased.  We therefore 

could not determine how the query should be mapped.  The other cases consisted of 

requests for information types that we did not observe in the sample documents.  Our 

experience mapping queries suggests that providing a list of document classes with 

corresponding semantic components could help a searcher quickly decide whether to 

search a given collection.  If the information need is not a simple topical question, and 

does not map to a combination  of document class and semantic component in the 

collection, the search might be better directed elsewhere. 

The semantic components in the two collections had substantial overlap, which is 

not surprising.  The semantic components reflect common physician works tasks (such 

as diagnose, manage, treat, refer) and important clinical issues (such as drug 

interactions).  We also noticed some differences between the collections that reflect 

differences with respect to the audiences and the practice milieus for which the 

collections are intended.  These differences are highlighted when developing semantic 

component schemas.  The sundhed.dk documents are intended primarily for family 

physicians, in large part to promote integrated care between family physicians and 

specialists.  The Danish healthcare system is managed largely at the regional level, and 

most of the documents are produced by, and written for, users in a particular region.  

Furthermore, the “gatekeeper” role of the family practitioner is more prominent than 

in the U.S.  As a result, referral guidelines are an important semantic component in 

the sundhed.dk documents, and reflect regional practices.  Similarly, the test or 
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procedure documents contained a component, practical information, that provided 

locally-tailored instructions for handling laboratory samples.  The UpToDate® 

collection does not address issues specific to local or regional practices. 

We performed the study in the medical domain because we had access to 

document collections and to the taxonomy of information needs.  Few other domains 

have been studied as thoroughly as the medical domain with respect to information 

needs and the resources that can satisfy those needs.  As a result, few other domains 

have such rich resources for studying domain-specific information retrieval.  

However, the semantic components model is not limited to any particular domain.  If 

an appropriate taxonomy of information needs were available, it would be possible to 

do a similar study in a different domain. 

 

5.4. Related Work 

The aspects we identified in the two collections of documents about medicine are 

similar to qualifiers in the Medical Subjects Heading (MeSH) vocabulary [72] used to 

index and search MEDLINE documents.  Both semantic components and MeSH 

qualifiers can be used to add specificity either to an index or to a search.  There are 

three fundamental differences however.  First, MeSH contains the notion of aspects, 

but they are not associated with classes of documents.  For individual documents (or 

searches) the indexer (or searcher) can associate a qualifier (that can represent an 

aspect of the concept represented by a term) with a specific indexing (or search) term.  

Second, MeSH is a vocabulary that was designed specifically for indexing and 
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searching a particular collection of documents.  The semantic components model is 

intended as a framework that allows the development of a set of document classes and 

semantic components appropriate for any given document collection and is not 

restricted to use in a particular domain.  Third, MeSH qualifiers are associated with an 

entire document.  Semantic component instances are subdocuments, allowing the 

searcher to restrict the search for certain terms to occurrences within selected semantic 

components.  In effect, the ability to search for a term within a labeled subdocument 

allows the searcher to specify a search for a full relation, not just the partial relation 

that is represented by a MeSH descriptor/qualifier pair. 

Several interesting retrieval systems in the medical domain use query models 

based on generic queries that incorporate relationships between concepts or aspects of 

topics. 

ELBook is a system for retrieving very fine-grained information from medical 

documents such as textbooks [110].  The text is indexed by associating queries with 

text segments, which can be as small as sentences or cells within a table, that answer 

those queries.  The query model consists of generic queries populated with concepts 

from the UMLS.  Instead of searching the text, the user identifies the query that will 

point him directly to the answer.  This query model offers very precise, but possibility 

limited, searching.  The quality of the searching experience is likely dependent on how 

well the indexer predicted the user’s information need.  We are not aware of an 

evaluation of the searching performance for ELBook. 
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DynaCat uses the UMLS to dynamically categorize search results [111].  The user 

issues a traditional query and also selects from a set of nine query types.  The query 

types are similar to our semantic components in that they consist of a topic type 

(problem, symptoms, treatment) associated with an aspect (such as preventive actions, 

risk-factors, treatments).  Interestingly, two of the types are reciprocal: problem-

treatments and treatment-problems; this reciprocity is similar to our mapping queries 

in two directions.  DynaCat uses the query types, not to refine the query, but to 

organize the documents into appropriate categories (in conjunction with indexing 

keywords and their semantic types) for presentation to the user.  

Cimino and his colleagues have done extensive work linking the electronic patient 

record to medical knowledge resources using InfoButtons [112-115].  The researchers 

use information from the patient record to populate generic queries with specific 

concepts.  The generic queries are mapped to automatic search strategies; when the 

user chooses a generic query, the system uses the query and specific concepts 

extracted from the patient record to compose a search strategy appropriate to 

whichever knowledge resource is appropriate.  For some MEDLINE queries, the 

relationship in the generic query is used to select a MeSH qualifier.  For example, if 

the user chooses the generic query “What is the treatment for <disease>?”, the system 

uses the qualifier Drug Therapy in its search strategy.  The InfoButton system does not 

otherwise appear to exploit aspects or relationships, and the queries are limited by the 

underlying indexing and query languages of the resources being searched. 
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All three of these systems make use of existing terminologies, such as the UMLS 

[107] and the Medical Entities Dictionary (MED) [114].  The UMLS Metathesaurus 

and Semantic Network provide extensive coverage of the concepts and relationships in 

medicine.  In general, ontologies and other knowledge organization models intended 

for use by computer applications specify the concepts in a domain plus relationships 

between the concepts and can be quite comprehensive.  With semantic components, 

our goal is different.  We want to express only those relationships or aspects of 

concepts that are important in a particular document collection and we want to express 

an information need in a way that helps users to find desired documents. 

 

5.5. Summary and Conclusions 

We used a taxonomy of generic questions to represent information needs and used 

semantic component schemas to describe two document collections that were 

appropriate to the information needs in the taxonomy.  We had developed the schemas 

based on the contents of the document collections, not based on the information needs 

represented in the taxonomy.  We investigated what proportion of the clinical 

questions and clinical question categories could be expressed using the semantic 

component schemas.  We found that a large proportion of clinical questions can be 

expressed using the document classes and semantic components we identified in the 

two collections of documents that provide information to clinicians. 

We conclude that the semantic components model is capable of representing 

information needs.  The ability to represent information needs is necessary, but not 
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sufficient, for demonstrating the potential usefulness of the semantic components 

model for searching.  In Chapters 7 and 8 we investigate the process of semantic 

component indexing and the usefulness of semantic components for searching, 

respectively. 



www.manaraa.com

 

146

Chapter 6    Evaluation of Semantic Component and Keyword Indexing 

 

Ultimately, we want semantic component indexing to improve a user’s ability to 

retrieve desired documents quickly and easily.  Directly measuring indexing 

effectiveness (whether an indexed document is correctly retrieved every time it is 

relevant to a query [116]) is not feasible, but searching studies can evaluate indexing 

effectiveness in combination with other factors that may influence retrieval and 

relevance judgments.  In Chapter 8 we report the results of a searching study that 

compares two experimental search systems, one with conventional indexing (in this 

case, full text indexing supplemented with manual keyword indexing) and one with 

semantic component indexing that supplements the conventional indexing.  

Comparing the search results achieved by each system is one way to assess the 

effectiveness of semantic component indexing. 

As part of assessing the feasibility and potential usefulness of the semantic 

components model, we must assess the feasibility of semantic component indexing.  

Assessing the feasibility of indexing includes determining how much time is required 

for indexing, assessing how the indexers perceive the difficulty of the task, and 

measuring the quality of the indexing.  In Chapter 7, we report our findings from a 

study that compared manual semantic component indexing to manual keyword 

indexing with respect to time required to index documents, perceived difficulty, and 

the quality of the indexing performed.  First, we must consider how to evaluate the 

quality of indexing.  In this chapter, we focus on identifying specific qualities of 
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indexing that may contribute to its effectiveness, that are easier to measure than 

effectiveness, and that can serve as surrogates for predicting effectiveness.  We 

discuss and critique candidate methods for measuring such qualities and propose 

methods for evaluating instances of semantic component indexing.  We also discuss 

evaluation of these qualities for keyword indexing.  In Chapter 7 we use the methods 

discussed in this chapter to evaluate data from the indexing study. 

The two qualities of interest that we will consider are accuracy and consistency.  

We use accuracy (or correctness) to refer to how well an instance of semantic 

component indexing represents document content in the framework of document types 

and semantic components that have been defined for a particular document collection.  

This definition implies comparison to an ideal indexing instance.  We use consistency 

(sometimes called reliability, reproducibility, or inter-indexer consistency) to refer to 

the similarity among indexing instances when different indexers index the same 

document.  A related concept is stability, which refers to the similarity between 

different indexing instances produced by the same indexer at different times, which 

can be considered a special case of consistency.  The same metric that is used to 

measure similarity between indexing instances produced by different indexers can also 

be used to measure stability, so we do not further discuss stability.   

We want to be able to measure the accuracy and consistency of indexing instances.  

The two measurements reflect the similarity between indexing instances, and many of 

the criteria for a good metric will be the same for both accuracy and consistency.  We 
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use the term agreement for the similarity that is being assessed between two or more 

indexing instances.  Agreement can apply to either accuracy or consistency. 

Assessing accuracy by comparing an indexing instance to an ideal indexing 

instance, or gold standard, is not actually feasible.  The semantic content of a 

document is open to subjective interpretation and any attempt to represent that content 

is unlikely to be agreed upon by all observers as a completely correct, or “gold,” 

standard.  We can, however, establish an acceptable reference standard by using a 

commonly accepted technique, such as expert opinion or consensus formation.  We 

can use the reference standard for evaluating an indexing instance, while recognizing 

the limitations of what the standard actually represents.  The “goldness” required can 

vary depending on the context and goal of the evaluation.  The effort invested in 

creating a reference standard, and its resulting quality (its “goldness”), is an 

orthogonal issue to methods used for comparing an indexing instance to the standard.  

For example, the same measurement of accuracy that is used to compare the indexing 

of a trainee human indexer to an expert-generated reference standard can also be used 

to compare an automatically generated indexing instance to a manually produced 

indexing instance that is assumed to be the reference standard (regardless of the formal 

training of the human indexer).  In both cases, the comparison is binary and 

asymmetric.  One indexing instance is the instance being evaluated, the other is the 

reference standard. 

Assessing consistency may involve two or more instances and is symmetric, that 

is, none of the indexing instances is assumed to be preferable to any other instance.  In 
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other words, for measuring consistency there is no gold standard.  Although indexing 

consistency does not directly reflect correctness, because indexing can be consistently 

incorrect, consistency is easier to measure than accuracy because it does not require 

constructing a reference standard.  Consistency is likely to be at least somewhat 

predictive of accuracy, and perhaps effectiveness, because consistency among 

indexers is likely to reflect the ability of the indexers to understand the task and 

perform it well.  Writing about consistency with respect to keyword indexing, Rolling 

[116] stated that “... since the selection of indexing terms by an indexer reflects his 

judgment regarding the information contained in the document and its representation, 

indexing consistency is essentially a measure of the similarity of reaction of different 

human beings processing the same information.”  We argue that the same is true of 

semantic component indexing, which is another method for an indexer to record his 

judgment about information contained in a document.  A judgment about document 

content that is similar to other judgments about the document’s content is more likely 

to be a faithful representation of document content than a judgment that is dissimilar 

to other judgments.  Consistently incorrect semantic component indexing may result 

from a different, but consistent, interpretation of a document class or semantic 

component label than what was intended.  Frequent users of a system are likely to 

adjust their searching behavior more easily to accommodate imperfect, but consistent, 

indexing than to accommodate inconsistent indexing. 

If we accept that indexing consistency reflects similarity of judgments about 

document content and its representation, then consistency among indexers may predict 
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that searchers will make similar judgments.  A searcher issues queries based on his 

expectations about how desired content is likely to be represented in a particular 

system.  A successful search outcome is more likely if there is a good match between 

the searcher and the indexer with respect to interpretation of document content and 

representation of content using the indexing language (such as a controlled vocabulary 

or semantic component schema). 

Indexing consistency might also reflect the quality of an indexing language itself.  

If a semantic component schema does not reflect the content and organization of a 

document collection, it will be difficult for indexers and searchers to use the schema 

consistently.  Similarly, interpretation and use of an indexing language will be 

hampered by poor choices with regard to the names used to represent concepts or 

indexing entities (such as document classes, semantic components, or controlled 

keywords), the descriptions of appropriate usage associated with each name, the 

degree of specificity or generality of terms, and the coherence of hierarchies.  If 

indexers frequently have different interpretations of either semantic components or 

controlled keywords, then it is likely that searchers will have different interpretations 

as well.  If indexers and searchers have disparate interpretations of the elements used 

for indexing, then search success is likely to be degraded. 

Methods to evaluate semantic component indexing are important not only for 

assessing indexing quality in a particular setting, but are also important as part of 

assessing the costs of scaling semantic component indexing to larger and more diverse 

collections.  For example, we may want to: (1) assess the expertise (and therefore cost) 
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required to extend manual semantic component indexing to larger or different 

collections without loss of indexing quality, or (2) assess the degradation of indexing 

quality if manual semantic component indexing is replaced with a different (cheaper) 

approach, such as automated or semi-automated indexing. 

The remainder of this chapter is organized as follows.  In Section 6.1 we discuss 

the properties of semantic component and keyword indexing and propose criteria for 

evaluation of indexing instances.  In Section 6.2 we compare semantic component 

indexing to related tasks and discuss candidate metrics for evaluating indexing 

instances.  In Section 6.3 we analyze a family of metrics, Krippendorff’s Alpha, and 

describe implementation of three of its forms.  In Section 6.4 we offer 

recommendations for evaluating indexing.  We summarize in Section 6.5. 

 

6.1. Properties and Criteria for Evaluation Metrics 

We propose two desirable properties for consistency metrics that apply to all of the 

indexing tasks we are about to discuss: 

1. A consistency metric should indicate the extent of agreement that exceeds the 

agreement we would expect by chance alone.  Agreement by chance is particularly 

likely to occur when the indexers are choosing among a small number of 

alternatives.  For example, with only two alternatives, random choice would result 

in agreement in 50% of instances. 

2. When measuring consistency, a metric should be able to compare the judgments of 

any number of indexers.  This criterion specifies that a metric ideally should be 



www.manaraa.com

 

152

capable of a global comparison of multiple indexing instances.  Averaging 

multiple pair-wise comparisons muddles the meaning of a consistency measure 

and can be unwieldy when many indexing instances are available for comparison. 

 

6.1.1. Characteristics of Semantic Component Indexing that Affect Measures of 

Agreement 

In Chapter 1 we proposed three ways that semantic components can be useful for 

searching.  In addition to a traditional query (using natural language or a controlled 

vocabulary), a searcher using an IR system with semantic components: (1) can 

indicate terms that should appear in specified semantic component instances; (2) can 

specify one or more semantic components that he desires to be present in retrieved 

documents (without specifying particular terms that should appear in the semantic 

component instances); and (3) can view, in the results display, a list of the semantic 

components instances present, and their relative sizes, in each retrieved document.  

When considering appropriate metrics for evaluating semantic component indexing, 

we focus only on the first use of semantic components.  We expect that any measure 

of semantic component indexing quality that pertains to the first way of using 

semantic component indexing will also be relevant to the other uses as well.  In this 

section we discuss the nature of semantic component indexing and propose criteria for 

good measures of the accuracy and consistency of indexing instances.   

Two related tasks comprise semantic component indexing of a document: (1) 

designation of the document class, and (2) identification of semantic component 
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instances in the text.  Designation of document class consists of selecting a document 

class from a list of labels.  Identification of semantic component instances consists of 

several related tasks: identifying text that contains information pertaining to a 

semantic component, indicating the boundaries of such text, and labeling the text with 

the appropriate semantic component name.  Designation of document class and 

identification of semantic component indexing are distinct tasks that, although related, 

should be evaluated separately.  The basic unit for indexing evaluation is an indexing 

instance.  Each indexing instance has a single document type and a single instance of 

semantic component labeling.  An instance of semantic component labeling can 

include multiple semantic component instances and each semantic component instance 

can consist of one or more semantic component segments. 

 

6.1.1.1. Assigning Document Class 

Document class assignment is a nominal categorization task.  Each document is 

placed into exactly one category chosen from multiple unordered categories.  We 

propose two criteria for useful metrics for comparing instances of document class 

assignment: (1) a metric should reflect whether indexers actually agree on the category 

chosen, and (2) a metric should be able to handle any number of categories. 

The first criterion specifies that agreement means that indexers chose the same 

category.  Here we are making a distinction between agreement and correlation.  

Systematic classification decisions, such as tending to choose a particular class more 

frequently than other classes or always choosing one class for a subgroup of 
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documents that other indexers would place in a different class, can result in one 

indexer’s decisions being different from, but highly correlated with, another indexer’s 

decisions.  Choice of document class s by indexer a might predict choice of class t by 

indexer b, resulting in a high correlation coefficient despite disagreement about choice 

of document classes.  We want to identify metrics that reflect agreement, not just 

correlation.19  The second criterion, allowing an indexing schema to have an arbitrary 

number of document classes, ensures flexibility for applying the metric in a variety of 

situations. 

These two criteria are orthogonal to the two criteria for consistency metrics, 

accounting for agreement by chance and handling an arbitrary number of indexers, put 

forth at the beginning of Section 6.1.  Correlations can occur by chance, and metrics 

that measure correlation can account for the probability of chance correlations.  We 

have extended the scope of our desired evaluation to encompass an arbitrary number 

of categories as well as an arbitrary number of indexers. 

 

6.1.1.2. Identifying Semantic Components 

Comparing the semantic component labeling portion of two indexing instances 

involves comparing both the labels and the extents of labeled segments.  By extent, we 

mean the range of text included in a given segment.  Figure 6.1 shows four instances 

                                                 
 
 
19 Explicitly measuring correlation might be useful in some circumstances, such as for determining the 
“confusability” of two document classes when developing or evaluating a semantic component schema. 
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of semantic component indexing for a short snippet of text.20  Text highlighted in 

color is an instance of the semantic component with the label in the callout box of the 

same color.  The extent of the epidemiology semantic component in Instance 1 is the 

nine-word sentence highlighted in yellow.  If a given section of text, such as a word, is 

labeled with the same semantic component name in two indexing instances, then it is 

easy to conceive of the evaluation task as comparing the boundaries of the two 

semantic component instances that include the word.  For example, the word 

“frequency” appears in Instance 1 and Instance 2 of the epidemiology component in 

Figure 6.1.  But what if the word is labeled with different semantic components in the 

two indexing instances?  In Instance 2 the word “age” appears in the epidemiology 

component, but in Instance 3 it appears in the diagnosis component.  Do we compare 

the labels?  Or do we compare the label and the extent?  What if one indexing instance 

has multiple overlapping semantic component instances and all instances include the 

same word, such as the word “frequency” in Instance 4?  The text highlighted in green 

in Instance 4 is part of two components, one highlighted in yellow (labeled 

epidemiology) and one highlighted in blue (labeled diagnosis). 

Semantic component indexing is intended to represent the meaning of text by 

grouping segments of text in a document that contain information about the same 

aspect of the main topic of the document.  Semantic component schemas that are 

appropriate to a particular document collection and user group may not match the  

                                                 
 
 
20 The snippet is composed of sentences extracted from http://www.emedicine.com/med/topic1816.htm 
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Figure 6.1 Four instances of semantic component indexing for the same document. 
Selected words are circled to highlight issues regarding comparison of difference indexing instances, as 
discussed in Section 6.1.1.2. 
 
 

document organization used by individual document authors.  Therefore, instances of 

different semantic components in a given document are likely to overlap.  We argue 

that the primary unit of evaluation for a given indexing instance should be a semantic 

component, and that each semantic component should be evaluated separately.  We 

make this argument for two reasons.  First, the semantic component is a basic unit for 

influencing document retrieval and ranking.  Second, if we evaluate each semantic 

component separately, then allowing a given fragment of text to be in more than one 

semantic component does not complicate the evaluation.  By analyzing each 

component separately, we can also gain more insight into the quality of indexing for 

Instance 1: Pheochromocytoma is a rare catecholamine-secreting tumor derived from chromaffin 
cells.  Pheochromocytomas occur with equal frequency in males and females.   
Pheochromocytomas may occur in persons of any age.  The classic history of a patient with a 
pheochromocytoma includes spells characterized by headaches, palpitations, and diaphoresis in 
association with severe hypertension.

Instance 2:  Pheochromocytoma is a rare catecholamine-secreting tumor derived from chromaffin 
cells.  Pheochromocytomas occur with equal frequency in males and females.   
Pheochromocytomas may occur in persons of any age.  The classic history of a patient with a 
pheochromocytoma includes spells characterized by headaches, palpitations, and diaphoresis in 
association with severe hypertension.

Instance 3:  Pheochromocytoma is a rare catecholamine-secreting tumor derived from chromaffin 
cells.  Pheochromocytomas occur with equal frequency in males and females.   
Pheochromocytomas may occur in persons of any age.  The classic history of a patient with a 
pheochromocytoma includes spells characterized by headaches, palpitations, and diaphoresis in 
association with severe hypertension.

Instance 4:  Pheochromocytoma is a rare catecholamine-secreting tumor derived from chromaffin 
cells.  Pheochromocytomas occur with equal frequency in males and females.   
Pheochromocytomas may occur in persons of any age.  The classic history of a patient with a 
pheochromocytoma includes spells characterized by headaches, palpitations, and diaphoresis in 
association with severe hypertension.

epidemiology 

epidemiology 

diagnosis 

diagnosis 

epidemiology 
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each component.  If a particular semantic component has low agreement, we may be 

able to improve indexing quality by interventions such as enhancing indexer training, 

improving documentation, or reconsidering the semantic component schema itself.  

Although aggregating the evaluation results for all of the semantic components in a 

document, or document class, may also be of interest, the initial task should be 

evaluation of each semantic component, whether the evaluation is of consistency or 

accuracy. 

Next we define six relationships that can occur between semantic component 

segments and semantic component instances that belong to different indexing 

instances: identity, independence, overlap, nesting, containment (the inverse of 

nesting), and subsumption.  Suppose we have two semantic component instances, i 

and j.  Let s be a segment in i and t be a segment in j.  Instances i and j are identical if 

both instances have the same number of segments and segments can be paired so that 

every pair contains one segment from each indexing instance and the extents of the 

segments in the pair are equal.  Instances i and j are independent if no text that appears 

in i also appears in j.  Instances i and j overlap if some text is included in both i and j, 

but each instance also includes some text that is not part of the other instance.  

Segment s (in instance i) is nested in segment t (in instance j) if segments s and t are 

not identical and if all the text in segment s is also in segment t.  In other words, the 

text in segment s is a proper subset of segment t.  If segment s is nested in segment t, 

then segment t contains segment s.  If s is the only segment in instance i, or if all the 

segments in i are nested in segments belonging to j, then instance j subsumes instance 
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i.  Observe that, if s is nested in t and instance i also contains at least one segment that 

is not nested in a segment belonging to j, then instances i and j overlap.  In Figure 6.2, 

each panel illustrates a relationship that can occur between two semantic component 

segments or instances.  In this example, each instance consists of a single text segment 

and both instances can be assumed to have the same label.  One instance is shown 

outlined by a solid, rectangular blue box, while the other instance is outlined with a 

dashed, round-edged red box.  In panel D, the segment surrounded by the dashed, 

round-edged red box is nested in the segment surrounded by the solid rectangular blue 

box, and the segment in the solid box contains the segment in the dashed box.  The 

instance in the solid box also subsumes the instance in the dashed box because both 

instances each consist of a single segment. 

Having decided to measure agreement between instances of each semantic 

component separately, we still have several issues to consider when determining the 

criteria for a good metric:  

• how to measure length of text segments 

• whether the relative nearness of two independent instances should affect the 

measurement of agreement  

• whether the position of a nested segment within the containing segment should 

affect the measurement of agreement 

• whether a difference in the number of segments within different instances 

should affect measurement (assuming the amount of overlap is the same)  

We discuss each of these properties in turn. 
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Figure 6.2 Relationships between semantic component instances 
 

 

The first issue we consider is the appropriate unit for measuring position (location) 

and length of a semantic component instance in a document.  A document and a given 

semantic component instance each has a total size, or length, and that length can be 

measured in characters, words, sentences, or other units.  Semantic component 

instances can consist of zero or more discontiguous segments, each of which also has a 

length.  Each segment also has a position, indicated by its boundaries, which are the 

beginning and end position in the text.  (Position can be indicated equivalently using 

one boundary and a length).  Several candidate units are worthy of consideration.  

C.  Overlap 
Pheochromocytoma is a rare catecholamine-secreting tumor derived from chromaffin cells.  
Pheochromocytomas occur with equal frequency in males and females.   
Pheochromocytomas may occur in persons of any age. 
The classic history of a patient with a pheochromocytoma includes spells characterized by 
headaches, palpitations, and diaphoresis in association with severe hypertension.  

D.  Nesting, containment, and subsumption 
Pheochromocytoma is a rare catecholamine-secreting tumor derived from chromaffin cells.  
Pheochromocytomas occur with equal frequency in males and females.   
Pheochromocytomas may occur in persons of any age. 
The classic history of a patient with a pheochromocytoma includes spells characterized by 
headaches, palpitations, and diaphoresis in association with severe hypertension.  

A.  Identity 
Pheochromocytoma is a rare catecholamine-secreting tumor derived from chromaffin cells.  
Pheochromocytomas occur with equal frequency in males and females.   
Pheochromocytomas may occur in persons of any age. 
The classic history of a patient with a pheochromocytoma includes spells characterized by 
headaches, palpitations, and diaphoresis in association with severe hypertension.  

B.  Independence 
Pheochromocytoma is a rare catecholamine-secreting tumor derived from chromaffin cells.  
Pheochromocytomas occur with equal frequency in males and females.   
Pheochromocytomas may occur in persons of any age. 
The classic history of a patient with a pheochromocytoma includes spells characterized by 
headaches, palpitations, and diaphoresis in association with severe hypertension.  
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Because we are interested in the semantics of text, we might consider a sentence, or a 

clause, as a basic unit for conveying meaning.  Both sentences and clauses have 

drawbacks as candidates units.  Sentences boundaries are not always easy to detect 

accurately in text, and finding clause boundaries would require parsing tools and 

would incur additional computational costs.  Furthermore, if a human indexer placed a 

boundary across a clause or sentence boundary, comparing that instance to other 

instances that adhered to the clause or sentence boundary would require a decision to 

either include or exclude partial clauses or partial sentences in the semantic 

component instance.  Another candidate unit is a word.  Words are the most common 

unit for full text indexing and for matching natural language queries to text.   

Automatically detecting word boundaries is relatively easy and accurate but still 

requires some preprocessing that could introduce inaccuracies, particularly with 

respect to punctuation and formatting characters.  Manually marked indexing instance 

boundaries could also fall within words, although they are less likely to fall within 

words than within sentences.  Neither sentences nor words will allow us to deal with 

graphics, images, or other multimedia content that can occur in documents.  We argue 

that using the smallest unit that a user can individually select in the base application 

(used to create or display the document) and for which the base application can return 

a location, provides high precision and low ambiguity.  For text, this is usually the 

character.  This approach also has generality; the same approach would be useful for 

graphics, images, or other multimedia content.  For the remainder of this discussion 
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we assume that documents consist only of text and that the character is the unit of 

measurement.21 

Next we consider relative positions.  Should independent but nearby instances 

(“near misses”) be considered more similar than independent instances that are far 

apart?  If our primary interest were to compare the similarity of text interpretation by 

different indexers, then we would want to know whether near misses reflect more 

semantic relatedness of text than non-near (far) misses.  For IR applications, if we are 

concerned only with the matching of query terms to document terms (which could be 

terms in full text, terms in keyword indexing, or terms in semantic component 

instances) then near misses are the same as far misses.  Here we are interested in 

whether query terms match terms in semantic component instances.  Near misses will 

not help retrieval and, therefore, a good evaluation metric should treat near misses and 

far misses as equivalent. 

We make a similar argument with respect to the position of nested segments.  We 

want our agreement measurement for two semantic component instances (belonging to 

different indexing instances) to reflect the similarity of their effectiveness.  In other 

words, how similar is the likelihood that each instance will contribute to correct 

retrieval of the document whenever a query is relevant to the document?  Although a 

                                                 
 
 
21 However, we note that the nominal and binary categorization metrics discussed in later sections are 
compatible with units that have positions in multiple dimensions, such as a pixel.  The unitization 
metric (see Section 6.3.3) assumes that position is measured on a linear scale.  Application of the 
unitization metric to units with position data expressed in two or three dimensions would require 
defining a new difference function for observed disagreement.  It is unclear how expected disagreement 
would be calculated. 
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nested segment that is centered might be more semantically similar to the containing 

segment than a nested segment located near a segment boundary, we have no way of 

knowing in advance whether query terms are more likely to match words in the center 

of a segment or words near the boundaries.  We argue that a good evaluation metric 

should treat nested segments that are of the same size, but that occur in different 

locations relative to the containing segment, as having equal agreement. 

We extend the same logic to argue that partitioning one segment into multiple 

segments, while maintaining the same amount of overlap with another segment, 

should not affect agreement because it does not affect the likelihood of query words 

occurring in the overlapping, versus nonoverlapping, parts of the text.  To illustrate the 

equivalent agreement between contiguous and discontiguous instances, let i, j, and k 

be instances of semantic component c appearing in three different indexing instances.  

Suppose also that instance j overlaps instance i  by a given amount, and that both i and 

j consist of a single segment.  Instance k overlaps i by the same amount as j but the 

overlap occurs in two discontiguous segments.  Should j be considered more, or less, 

similar to i than k?  Whether a query matches i, j, or k depends only on whether a 

query term matches a term in the instance, not how many segments comprise the 

instance.  We therefore argue that discontinuities are not, by themselves, significant 

and that the similarity between j and i and between k and i is the same.  This approach 

is different from content analysis (discussed in Sections 6.2 and 6.2.2), where the 

number of segments can be very important.  A content analyst might be interested in 
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the number of occurrences of an event, such as the number of violent acts in a 

television program or in a story. 

In summary, a good metric for measuring the agreement between semantic 

component indexing instances should meet the following criteria: 

• It allows comparing instances of each semantic component separately. 

• For segments of a given length, it results in more agreement when the length of 

the overlap or the length of the nested segment is larger. 

• It treats near misses the same as far misses. 

• For segments of a given length, it results in the same measured agreement 

regardless of the position of the nested segment within the containing segment. 

• It allows semantic component instances to be discontiguous.  It measures 

overlap between instances and is agnostic regarding whether such overlaps are 

contiguous and whether the number of segments is the same. 

 

6.1.2. Characteristics of Keyword Indexing that Affect Measures of Agreement 

As described in Chapter 2, some document collections are indexed with keywords, 

usually assigned manually.  Keywords have traditionally been applied to whole 

documents, although they also could be assigned to subdocuments (such as semantic 

component instances).  We consider two types of keyword indexing: (1) keywords that 

are chosen from a controlled vocabulary, and (2) “free” keywords that are chosen from 

unrestricted natural language.  For both types of keyword indexing, the number of 
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terms is usually flexible, not fixed, but represents a small proportion of the total 

universe of possible indexing terms. 

Lancaster describes keyword indexing as having two principal steps: conceptual 

analysis (deciding what a document is about) and translation (deciding what terms to 

use as representations of the concepts) [22].  Comparing indexing instances with free 

keywords can be especially challenging because, in the translation step, indexers can 

choose synonyms to represent the same concept or may choose linguistic variants of 

the same base word (such as different verb tenses or a gerund instead of a verb).  

When developing an evaluation procedure, one must decide whether to perform some 

normalization before determining whether certain keywords are distinct or not.  

Controlled vocabularies diminish the problem of synonyms and word variants by 

normalizing the terms used to represent various concepts.  In this work we assume that 

any normalization has already been performed so that our concern is how to measure 

agreement for a given set of keywords. 

The two principal characteristics of keyword indexing that affect how we measure 

agreement are (1) the number of keywords assigned can vary both by document and 

by indexer, and (2) the universe of possible keywords is large and possibly unlimited.  

Keywords can be viewed as categories; assigning a keyword places the document in a 

category represented by the keyword.  The universe of categories is equal to the 

number of keywords in a controlled vocabulary and is essentially unbounded for 

indexing with free keywords.  Although the universe of “legal” keywords can be large, 

common sense suggests that human indexers do not consider the entire population of 
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keywords when they choose keywords to assign to a document.  What, then, is an 

appropriate universe to consider? 

If different indexers assign different numbers of keywords to the same document, 

how many items are we judging for agreement, or disagreement?  If each indexer were 

limited to the same fixed number, m, we could conceptualize the indexing process as 

making m decisions or as filling m slots.  For a flexible number of keywords, an 

automated keyword indexer could be viewed as making n decisions to accept or reject 

each of n keywords in a vocabulary of size n.  Human indexers do not explicitly 

consider every keyword in a large vocabulary.  How many do they consider? 

When we consider how to account for the probability that two indexers will assign 

the same keyword by chance, the same question arises.  We must decide what is an 

appropriate universe to consider.  For semantic component indexing, the indexer 

chooses document classes from a schema and selects text to include or exclude from a 

small number of semantic components associated with that document class.  The 

number of choices that could be made at random are limited.  For keyword indexing, 

assuming that every term in a large controlled vocabulary is equally likely to be 

chosen is not reasonable.  Agreement could be trivially increased by simply adding 

more terms to the vocabulary, regardless of how irrelevant they might be to the 

document being indexed.  Agreement by chance for free keyword indexing would 

approach zero because the universe of choices is unlimited.   
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Therefore, in addition to the desirable properties for all indexing consistency 

metrics, we propose the following criteria for a measure of agreement applied to 

instances of keyword indexing: 

• It allows comparing instances with different numbers of assigned keywords. 

• It does not allow the probability of chance agreement to be artificially 

decreased by merely increasing the universe of possible indexing terms. 

 

6.2. Tasks Related to Indexing and Candidate Metrics for Agreement 

In this section, we discuss tasks that are similar to assigning document classes, 

identifying semantic component instances, and keyword indexing.  We discuss metrics 

that have been used in the literature to evaluate these tasks and analyze the potential 

usefulness of the metrics for semantic component and keyword indexing. 

First, we consider how each of these tasks can be treated as text categorization 

(Section 6.2.1).  The automated text categorization literature discusses evaluation of 

automatic text categorization systems by comparing categorization results to reference 

standards, which typically represent human judgments.  Another source of relevant 

literature, and metrics, is content analysis.  Content analysis [52] typically involves 

coding (labeling) units of information within a message (such as text, audio or video).  

Once the units of information are identified, assigning labels is a form of text 

categorization.  Content analysis is generally performed by human analysts, often as 

part of social science research.  Establishing the reliability of the coding process 

commonly involves comparison of coding data produced by different coders 
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(consistency) [52].  Similar tasks, and investigations into interobserver agreement, can 

be found in literature in various fields, such as behavioral research [117] and 

linguistics [118, 119]. 

Next we compare identifying semantic component instances to unitization in 

content analysis, which is identifying the boundaries of information units within a 

document when they are not predefined (Section 6.2.2).  Then we consider how some 

other tasks that identify, and sometimes label, subdocuments relate to semantic 

component indexing.  Examples of related subdocument tasks we will consider are: 

identification of the boundaries in text where the topic changes, recognizing text that 

represents a novel aspect of a topic compared to those aspects that have already been 

found, and identifying specific elements of information that can answer a question or 

fill a slot in an information extraction structure (Section 6.2.3).  Finally, we discuss 

keyword indexing (Section 6.2.4). 

 

6.2.1. Text Categorization 

Sebastiani distinguishes hard categorization (a binary decision with respect to 

membership or non-membership in a category) from ranked categorization (an 

estimation of appropriateness of membership in each category).  He also distinguishes 

single-label categorization (a document belongs to one category) from multilabel 

categorization (a document can be placed in zero to |C| categories, where C is the set 

of categories) [120].  Multilabel categorization can also sometimes be viewed as |C| 

binary classification problems, where C is the set of categories and a document either 
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belongs to class ci or its complement (class ¬ci).  Treating multilabel categorization as 

multiple binary classifications is appropriate only if a document’s membership in a 

category is independent of its membership in any of the other categories [120].  

Single-label categorization means that membership in each class is not independent 

and document categorization cannot be treated as a series of binary classification 

tasks.  These distinctions become important when we consider metrics for evaluation 

of categorization.   

Assigning document class is an example of single-label categorization and not 

multiple binary classifications because, in this chapter, we assume that a document can 

belong to only one class.  (In Chapter 9 we discuss allowing documents to belong to 

multiple classes).  We also assume that the categorization is hard, not ranked. 

Keyword indexing is an example of multilabel categorization.  Each keyword 

represents a category to which a document can belong.  Here we assume all keywords 

are equally important, and thus categorization is hard, although some systems do allow 

keywords of differing importance.  Should we treat keyword indexing as multiple 

binary classification problems?  An automated keyword indexing system would 

algorithmically consider each possible category and could reasonably be treated as 

multiple binary classifications.  Human keyword indexing, from either a large 

controlled vocabulary or from unrestricted natural language, is somewhat different.  

When the universe of keywords is large, human indexers do not explicitly consider 

every possible keyword.  Implicit rejection of a category, by not choosing a keyword, 

should not necessarily be treated as classification equivalent to explicit selection or 
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rejection.  We argue that to do so would imply that all terms in a large keyword 

universe should be considered possible choices when considering the probability of 

agreement by chance.  In practical terms, we argue that an indexer would not take 

additional effort to consider every new term if a completely unrelated portion of the 

indexing vocabulary were (for example) to be doubled in size.  Thus, we argue that it 

is unreasonable to model keyword indexing as involving binary classification with 

respect to the added terms.   

On the other hand, when keyword indexers use a controlled vocabulary it might be 

reasonable to identify a subset of the controlled vocabulary from which indexing 

might be treated as multiple binary classification tasks.  Lancaster notes that “it seems 

probable that the greatest consistency would be achieved in the assignment of those 

terms that might be preprinted on an index form or displayed online ... to remind an 

indexer that they must be used whenever applicable.” [22].  Using such limited, well-

defined lists of keywords that require explicit consideration could reasonably be 

treated as independent binary classification tasks. 

It might also be reasonable to consider the keywords in a reference standard as 

terms that the indexer either chose or excluded, even if we do not know whether the 

indexer explicitly considered each of those terms.  A reference standard consists of 

terms relevant to the document and forms a subset of terms that we can say the indexer 

should have been considering, even if he did not agree that a particular term should be 

included.  We could extend this same argument to the set of unique terms used by at 
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least one indexer when comparing consistency, considering it as a universe of terms 

that indexers either chose or excluded. 

Identification of text segments that are instances of a semantic component can also 

be considered text categorization.  Each unit of text identified as belonging to a 

semantic component instance is placed in a category (i.e., is labeled with the name) 

representing that semantic component.  Because each unit of text can belong to zero, 

one, or more semantic components, identifying semantic component instances is 

multilabel categorization.  In contrast to keyword indexing, identification of semantic 

component instances can be viewed confidently as multiple binary categorizations of 

each text element with respect to the list of semantic component labels.  The semantic 

components comprise a limited number of categories that are explicitly considered by 

the indexer and for which membership by any given text element is independent from 

its membership in the other categories. 

 

6.2.1.1. Measuring Accuracy of Single-label or Multilabel Categorization 

Automated text categorization is typically evaluated with respect to a reference 

standard based on expert judgment.  The most commonly used performance measures 

are recall and precision [120].  Other measures sometimes used are fallout, accuracy, 

error, and F1.  Figure 6.3 shows a contingency table and uses the contingency table to 

define performance measures for comparing the decisions of a categorizer to the 

decisions in a reference standard for a particular category. 
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Figure 6.3 Calculation of accuracy measures for categorization 
 
 

Accuracy and error are generally less useful than recall and precision because both 

accuracy and error have the total number of documents in the denominator.  As a 

result, for rare categories (for which both true positives (TP) and false negatives (FN) 

are very small), the magnitude of true negatives (TN) can dominate the calculation.  

Even large changes in TP and FN may have only small effects on accuracy and error, 

masking differences in performance.  Similarly, fallout contains TN in its denominator 

and is similarly affected when TN is much larger than false positives (FP) [121].  F1 

combines recall and precision and is suitable when the number of categories per 

document is small compared to the total number of categories [121].  Note that this 

approach to evaluating categorization results is category-centric.  Performance is 

calculated for each category, where: 

 
(1) 

 Reference Standard 
Categorization Decision Yes No 

Yes TP FP 
No FN TN 

 

   
 Abbreviations:  TP: True positives FP: False positives 
    FN: False negatives TN: True negatives 
    
 Metrics:  
 Recall = TP / (TP + FN) 
 Precision = TP / (TP + FP) 
 Accuracy = (TP + TN) / (TP + FP + FN + TN) 
 Error = (FP + FN) / (TP + FP + FN + TN) 
 Fallout = FP/(FP + TN) 
 F1 = (2 * recall * precision) / (recall + precision) 

categorytheinactuallydocumentsofnumber
categorytheinplacedcorrectlyisdocumentatimesofnumberrecall =
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and 

 
(2) 

 
The above measures are applicable to either single-label or multilabel categorization, 

but, by definition, make sense only when comparing a set of categorizations to a 

reference standard, not when comparing the decisions of “peers” (such as two or more 

equally trained or equally trusted human indexers). 

Recall or precision can be summarized over multiple categories by microaveraging 

(averaging results of all decisions over all categories) or by macroaveraging 

(averaging results locally for each category individually then averaging the results for 

the different categories).  Microaveraging weights each document equally whereas 

macroaveraging weights each category equally, regardless of how many documents 

are assigned to each category [120, 121].  IR studies most commonly report 

macroaveraged results, where recall and precision are calculated for each query and 

then averaged across all queries.  Text categorization, on the other hand, is more 

commonly evaluated using microaveraging [122]. 

Note that, for single-label categorization, microaveraging will result in the same 

value for both precision and recall.  This result occurs because microaveraging is the 

sum over all categories of the TP values divided by the sum, over all categories, of 

either TP + FN (for recall) or TP + FP (for precision): 

categorytheinplacedisdocumentanytimesofnumber
ythecategorinplacedcorrectlyisdocumentatimesofnumberprecision =
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(3) 

 

 

 
(4) 

 
For both recall and precision, the numerator is identical.  The denominator is also the 

same for microaveraged recall and precision when each document is placed in exactly 

one category because the sum over all categories of either TP + FN (recall) or TP + FP 

(precision) is just the total number of categorizations performed.  Every FP in one 

category is a FN in another category. 

In the context of evaluating semantic component instances, microaveraging 

corresponds to weighting each character in each document equally.  Macroaveraging 

corresponds to weighting each semantic component instance (in each document and as 

indexed by each indexer) equally, regardless of the length of each instance.  The 

choice of microaveraging or macroaveraging depends on the purpose of the data 

analysis.  Because we have no prior experience evaluating semantic component 

indexing, we are interested in both types of averaging to gain as much understanding 

of the indexing process as possible. 

One issue that is rarely discussed with regard to these calculations is the possibility 

of having a zero occur in the denominator.  Yang includes a caveat in her definitions 

of these performance measures—that the definition holds if the denominator is greater 

than zero, otherwise it is undefined—but she does not discuss how to deal with the 
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undefined values when computing averages [121].  Lewis notes that while an 

undefined value is unlikely to occur in microaveraging, it may occur when 

macroaveraging is used.  Lewis refers to work by Tague who suggested, in the context 

of evaluating information retrieval results, that one can either treat 0/0 as 1.0 or throw 

out the query, and comments that for text categorization one can choose to 

macroaverage over only those categories for which this situation does not arise, as 

long as the approach is consistent for all data presented [122]. 

We expect that not all documents in a class will have instances of every semantic 

component for that document class.  If the reference standard does not have an 

instance for a particular semantic component, then both TP and FN will equal zero.  

Calculating recall for that semantic component will result in 0/0, regardless of whether 

the indexing instance that is being evaluated has text assigned to an instance of the 

semantic component.  In contrast, the calculation of precision does depend on the 

indexing instance.  If the indexer has not included any text in an instance of the 

semantic component, then FP is also equal to zero and precision = 0/0.  If the indexer 

has included some text in an instance of the semantic component, then FP > 0 for that 

component and precision = 0.   

Macroaveraging can be useful to compare performance among indexers or to use 

indexing performance to assess the difficulty of indexing particular documents or the 

difficulty of identifying particular semantic components.  When macroaveraging recall 

values, a value of 0/0 means we have no information about the indexing instance and 

no information about indexing performance.  We propose that the individual semantic 
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component-document combination should be excluded from the macroaverage 

calculation when recall equals 0/0.   

Macroaveraging precision is different from recall.  Not including any text in a 

semantic component instance, when a semantic component instance does not appear in 

the reference standard for the same document, is evidence of good indexing 

performance.  Inclusion of text in a semantic component instance, when there is none 

in the reference standard, is evidence of imperfect indexing performance.  This 

evidence is useful when summarizing data with macroaverages.  We therefore propose 

that precision values of 0/0 (reflecting ideal indexer performance) should be treated as 

1.0, but only for macroaveraging.  Precision results of 0/FP all resolve to zero, 

regardless of FP values.  Unfortunately, this convention does not allow us to 

discriminate between errors of different magnitude, but we do not have a better 

solution. 

Recall and precision (and the related measures shown in Figure 6.3) are often used 

to evaluate automated systems, either for information retrieval or for text 

categorization.  Such systems are deterministic and there is no notion of the systems 

categorizing or retrieving documents randomly.  Only the test parameters, such as 

queries, documents, and categories, can be treated as samples of a larger population.  

Reporting tests of statistical significance testing is relatively rare in the IR and text 

categorization literature, but a few authors have discussed appropriate methods for 

determining the statistical significance of performance differences between IR systems 

for some number of queries [123-125] or between text categorization systems for 
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some number of documents, categories, or document-category pairs [126], where each 

system’s performance has been measured by comparing it to a gold standard. 

When measuring the accuracy of human indexers, one might consider two possible 

approaches to statistical testing.  First, one might consider using a statistical test 

designed for 2 x 2 contingency tables, such as the Chi-Square (Χ2) test.  Χ2 tests 

whether the proportion of objects in each category is significantly different from the 

expected proportion of objects in each category.  However, for categorization 

correctness, Χ2 uses the same values as the recall and precision calculations (the 

numbers in the cells of the 2 x 2 contingency table) and compares the numbers in each 

category, not the correctness, and thus actually provides less information than recall 

and precision.  Two different performances, one with better recall and one with better 

precision (the same number of TP and TN but swapped values for FP and FN), could 

yield the same Χ2 value.  Hence the Χ2 test is not particularly useful for evaluating 

accuracy of semantic component indexing.  A second approach is to consider the 

recall or precision value for each semantic component instance as a sample proportion 

(recall is the proportion of all characters belonging in a semantic component instance 

that are correctly indexed) from the population of all documents, all indexers, or all 

semantic components of interest.  This approach allows us to aggregate the individual 

values for recall and precision using microaveraging and macroaveraging, and to 

examine the variance of recall and precision values when we macroaverage.  We can 

also use standard statistical tests, such as those suggested by Yang [126], to compare 
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the recall or precision between two groups, such as the indexing instances for two 

document types or by two indexers. 

 

6.2.1.2. Measuring Consistency of Single-label Categorization 

For measuring consistency of single-label categorization, we consider the content 

analysis literature and some related literature from computational linguistics.  A 

commonly used approach to estimate intercoder reliability is to measure percentage 

agreement [127] (number of units on which all coders agree/total number of units), a 

measure that has been criticized for failing to account for agreement by chance [52, 

118, 127-129].   Krippendorff has reviewed a larger selection of coefficients of 

agreement [52, 130] but we consider only three commonly used coefficients here: 

Cohen’s Kappa (Cκ ) [131], Scott’s Pi (Sπ) [128], and Krippendorff’s Alpha (Kα) [52, 

130].  All three coefficients can be expressed as: 

 

 
(5a) 

or equivalently as: 

 

 
(5b) 

Perfect agreement (no disagreement) results in a value of one, whereas agreement that 

is no better than what can be expected to occur by chance results in a value of zero.  

Values less than zero indicate systematic disagreement, that is, more disagreement 

than would be expected to occur by chance.  The differences among the three 
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coefficients arise from the calculation of expected agreement.  Expected agreement 

(agreement by chance) depends on the number of categories, and also on the 

frequency with which each category is used.  Total probability of chance agreement is 

the sum of the probabilities of chance agreement for each category. 

Although various authors have proposed agreement coefficients that treat all 

categories as equally likely, such as Bennett’s S [130], a coefficient that assumes equal 

distribution of categories is inappropriate for settings in which a nonuniform 

distribution is expected, as would be the case in a large document collection.  Scott 

points out that minimum chance agreement occurs when each coder uses each 

category with equal frequency [128].  Cκ determines expected agreement based on the 

proportion of units that each coder places in each category.  Cohen claims that Cκ 

assumes that the proportional allocation of units to categories (i.e., tendency to prefer 

certain categories over others) is part of the coders’ disagreement [131].  The element 

of chance merely determines which units are placed in which categories.  For example, 

if coder A places 20% of all documents in category S and coder B places 80% of all 

documents in category S, then the expected agreement for category S is .2 * .8 = .16.  

In other words, the two coders would be expected to agree on category A 16% of the 

time.  Krippendorff points out that Cκ measures a correlation between the coders, and 

that greater disagreement between coders with regard to marginal frequencies (the 

frequency that an indexer uses each category, which is shown in the marginal column 

of a contingency table) actually results in a higher coefficient of agreement [52]. 
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When marginal frequencies are the same for all coders, Cκ is identical to Sπ, but when 

marginal frequencies differ, Cκ exceeds Sπ [130].   

Sπ and Kα treat all coders as if they are interchangeable and calculate expected 

agreement based on an underlying “true” frequency of each category.  The true 

frequency for each category (i.e., the true class for each document) is unknown and 

must be estimated.  Sπ and Kα assume that the coders’ actual use of each category (the 

mean frequency calculated from all coding samples) represents an estimate of the true 

frequency and therefore the probability of a random coder choosing that particular 

category.  Kα is nearly identical to Sπ, except that Kα calculates the probability of a 

coder choosing a category based on sampling without replacement.  This difference 

results in Kα exceeding Sπ by an amount that is dependent on the sample size.  At 

large sample sizes, Kα approaches Sπ asymptotically.  All three measurements are 

affected by the underlying prevalence of categories [119].  If there are two categories, 

and nearly all the documents fall into a single category, the probability of agreement 

by chance is so high that even extremely high levels of observed agreement result in 

agreement measures near zero. 

Figures 6.4 and 6.5 show example data and equations for calculating the three 

coefficients.  For simplicity of illustration we use two observers22 and three categories.  

Figure 6.4 shows an agreement table for calculating Cκ and Sπ.  The cells in the 

                                                 
 
 
22 Measures of agreement are used in various fields to quantify agreement on a variety of categorization 
tasks, such as coding, rating, diagnosing etc.  For simplicity and generality we sometimes use the term 
observer instead of coder or indexer. 
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agreement table for Cκ and Sπ contain the fraction of the observed values that 

correspond to the values chosen by each observer.  For example, the cell labeled 

 
Figure 6.4 An agreement table, a coincidence matrix, and an example data set 

Agreement table for calculating Cκ and Sπ: 
Observer B 

Category 1 2 3 PA(category) 
1 p(1,1) p(1,2) p(1,3) pA(1) 
2 p(2,1) p(2,2) p(2,3) pA(2) 
3 p(3,1) p(3,2) p(3,3) pA(3) 

Observer 
A 

PB(category) pB(1) pB(2) pB(3) 1.0 
 
Coincidence matrix for calculating Kα: 

Category 1 2 3 num in category 
1 obs (1-1) pairs obs (1-2) pairs obs (1-3) pairs obs (1-*) pairs 
2 obs (1-2) pairs obs (2-2) pairs obs (2-3) pairs obs (2-*)pairs 
3 obs (1-3) pairs obs (2-3) pairs obs (3-3) pairs obs (3-*)pairs 

num in 
category obs (1-*) pairs obs (2-*) pairs obs (3-*) pairs total obs pairs 

 
Example data table: 

 Item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Observer                

A  c a c c a b b a c c b b c c b 
B  c a c b b b c a c c c c c c b 

 
Agreement table for calculating Cκ and Sπ, populated from the example data: 

Observer B 
Category a b c PA(category) 

a 0.133 0.067 0.000 0.200 
b 0.000 0.133 0.200 0.333 
c 0.000 0.067 0.400 0.467 

Observer 
A 

PB(category) 0.133 0.267 0.600 1.0 
 
Coincidence matrix for calculating Kα, populated from the example data: 

Category a b c num in category 
a 4 1 0 5 
b 1 4 4 9 
c 0 4 12 16 

num in 
category 5 9 16 30 
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For the example data in Figure 6.4: 
Cκ  = 0.448 
Sπ  = 0.443 
Kα  = 0.461 

(6) 
 
 
 
 
 
 

(7) 
 
 
 
 
 
 

(8) 

Figure 6.5 Equations for calculating Cκ, Sπ and Kα 
 
 
“p(1,2)” contains the proportion of the total items that observer A placed in category 1 

and that observer B placed in category 2.  Figure 6.4 also shows a coincidence matrix 

that can be used for calculating Kα.  The cells in the coincidence matrix for Kα contain 

the number of pairs of values for which one of the two observers assigned one 

category and the other observer assigned the other category.  For example, the cell 

labeled “obs (1-2) pairs” contains the number of observations for which one observer 

placed the item in category 1 and the other observer placed the item in category 2.  

Because “obs (1-2) pairs” is the number of items that would be represented in both the 

p(1,2) cell and the p(2,1) cell in the agreement table, the total number of observed 

pairs is double the number of observations.  Figure 6.4 also shows an example data 

set, with the categorization for each of 15 items by two observers, and both an 
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agreement table and a coincidence matrix that have been populated from the example 

data set.  Figure 6.5 shows the equations for calculating each agreement coefficient 

based on either the agreement table or the coincidence matrix.  Figure 5 also shows the 

values calculated for each of the three coefficients from the example data set.  Note 

that, because the marginal frequencies are unequal, Cκ exceeds Sπ.  Also note that Kα  

exceeds the other two values because the data set is small. 

Cκ and Sπ were both originally proposed for measuring agreement between two 

observers.  Fleiss subsequently generalized Cκ to measure nominal scale agreement 

between more than two observers when the same number of observers categorize each 

object [132].  This same generalization to more than two observers is described in a 

statistics text by Siegel and Castellan as the “kappa statistic,” although when applied 

to a case with only two observers it is actually identical to Sπ, not Cκ, in that it 

assumes the same probability of assignment to a given category for all raters [133]. 

The similarity in names between Cκ (“Cohen’s kappa”) and the kappa statistic for 

multiple observers is a potential source of confusion. 

Sπ and Kα are conceptually similar and result in similar values.  The use of 

sampling without replacement (instead of sampling with replacement) by Kα results in 

a small adjustment for sample size, which is reasonable.  Although both are metrics 

are suitable for measuring consistency of single-label categorization, we prefer Kα 

because of its ability to handle unequal numbers of observers per item being 

categorized.  This means we can handle a different number of indexing instances per 

document. 
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6.2.2. Unitization In Content Analysis 

As noted at the beginning of Section 6.2, content analysis is the systematic 

evaluation of the content of various forms of communication and usually involves 

coding (labeling) units of information.  For some tasks, the unit to be labeled is 

obvious (and predefined), such as documents to be indexed, sentences to be coded, or 

patients to be diagnosed.  For other tasks, identifying the boundaries of an information 

unit (within a message) is an important part of the analysis that precedes assigning a 

code, or label, to the unit.  For example, an analyst may need to identify text segments 

that pertain to a research question or to identify episodes or events of interest [52].  

Krippendorff calls the process of deciding what is included (or excluded) in each unit 

unitization.  For each labeled category, unitization partitions text into sections, where 

each section is either a unit or a gap. 

Assessing the consistency of coding output among two or more coders who 

unitized the message requires comparing the unitization part of the task as well as the 

codes applied.  The sections produced by unitization have lengths, locations (described 

by the starting and ending boundaries), and a binary value that indicates whether the 

section is a unit or a gap.  Depending on the nature of the content analysis task, 

unitization can be performed with respect to one or more categories.  Each category is 

treated separately in the agreement calculations. 

Semantic component indexing is analogous to content analysis in that: (1) 

instances of a semantic component can have zero or more segments; (2) we consider 

each semantic component separately; and (3) segments produced by semantic 
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component indexing can be characterized by length, location, and whether the segment 

is in the instance (is a unit) or not in the instance (is a gap).  One difference between 

content analysis and semantic component indexing is that different segments 

belonging to a particular semantic component instance are always discontiguous, by 

definition.  If segments belonging to a semantic component instance are adjacent, they 

are automatically combined to become a single segment because there is no reason to 

treat them as distinct segments.  In content analysis, it can be useful to distinguish 

separate but adjacent segments.  For example, one might want to count the number of 

episodes of violence in a transcript or recording.  Episodes of violence might be 

distinct but adjacent.  Therefore, adjacent segments are permitted and are treated as 

distinct units when calculating agreement. 

Krippendorff has developed an extension of Kα to measure agreement 

(consistency) with respect to unitization performed by different analysts [52].  We 

discuss Kα for unitization in more detail in Section 6.3.3.  The difference between the 

two tasks, content analysis and semantic component indexing, with regard to 

adjacency becomes important when we analyze the behavior of Kα for unitized data. 

 

6.2.3. Other Subdocument Tasks Similar To Semantic Component Indexing 

So far, we have considered semantic component indexing as first classifying whole 

documents (assigning document class) and, then, categorizing each unit of text (such 

as a character) within a document.  In this section we discuss other tasks similar to 

identifying the text that belongs to a semantic component instance.  In this group we 



www.manaraa.com

 

185

include linear text segmentation, passage retrieval, question answering, novelty 

detection, and information extraction.  All these tasks involve selecting and 

manipulating text at a subdocument level.  We consider the evaluation methods that 

have been used for these tasks and note that the unit of evaluation is a critical 

determinant of the evaluation approach.  In particular, we compare the character-based 

classification approach to the evaluation units and metrics traditionally used for these 

other subdocument tasks. 

 

6.2.3.1. Linear Text Segmentation 

As discussed in Chapter 2, text segmentation divides text into sections, placing 

boundaries to indicate changes in topic or discourse element.  Although text 

segmentation can be linear or hierarchical, we focus on linear segmentation because it 

is more similar to identifying semantic components in text.  In text segmentation, the 

segments cannot overlap and possible boundaries are sometimes restricted to 

occurring only between paragraphs, between sentences, or between phrases.  We do 

not impose such restrictions in semantic component indexing.  If we consider one 

semantic component at a time, then identifying the segment(s) of text that constitutes 

an instance of that semantic component requires finding segment boundaries.  

Evaluating boundary placements for the segments is similar to evaluating text 

segmentation efforts, although we allow boundary placement to occur between the 

smallest resolvable units, such as characters. 
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Text segmentation research usually compares the results of an automated system to 

a reference standard, which typically is either a concatenation of news stories or a 

manually produced standard.  In the first case, the automated system tries to determine 

the story boundaries, which are known to the researchers.  In the second case, 

establishment of an adequate standard may involve evaluating the consistency of 

human judges or developing a consensus standard.  First, we consider how to measure 

accuracy, that is how to compare an automated system to a standard, however it is 

derived.  Then, we consider methods for considering multiple human judgments for 

the purpose of making a standard. 

One approach to measuring accuracy of text segmentation algorithms is to define 

standard IR metrics, such as recall and precision, in terms of boundaries instead of 

documents.  Boundaries are placed correctly or incorrectly or they are missed (no 

boundary is placed where there should be a boundary).  This approach is taken by 

Passonneau and Litman [134] and by Hearst [135].  Ponte and Croft take a similar 

approach except that, in addition to calculating recall and precision based on exact 

matches, they also report recall and precision calculated with a partial-match function 

that gives some credit for near misses [53].  Recall and precision of boundaries is not 

likely to be useful for assessing the accuracy of semantic component indexing for two 

reasons.  First, recall and precision do not account for chance placement of correct 

boundaries.  Second, if a boundary placement is off by, say, one word, the semantic 

component instance may have nearly as much usefulness as a completely correct 

instance because the text included in the instance is almost the same as the text in the 
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reference standard instance.  Near misses should be credited relative to the nearness of 

the boundary placed by an indexer to the boundary occurring in the reference standard.  

Beeferman, Berger, and Lafferty introduce an error metric, Pk that considers both 

near misses and the probability of random agreement.  Briefly, they calculate the 

probability that two sentences drawn randomly from a corpus are correctly identified 

as belonging to the same document (segment), or to different documents (segments) 

[136].  Pevzner and Hearst criticize Pk as penalizing false negatives more than false 

positives, overpenalizing near misses, and being sensitive to variations in segment 

size.  Pevzner and Hearst propose a modified metric called WindowDiff [137].  Both 

Pk and WindowDiff are more appropriate for semantic component indexing than recall 

and precision of boundary placements, but they still have some drawbacks that are 

related to differences in the tasks being evaluated.  Pk requires setting a parameter k 

based on the mean segment length and is sensitive to variability in segment size.  

Segment sizes can be highly variable in semantic component instances.  WindowDiff 

is less sensitive to segment size, but operates by calculating the number of boundaries 

between the ends of a fixed length probe. 

Passonneau and Litman measured agreement among human subjects performing 

discourse segmentation by calculating percent agreement, which they defined as “the 

ratio of observed agreements with the majority opinion to possible agreements with 

the majority opinion” [134].  In their study with seven human subjects, a majority 

opinion was the placement (or nonplacement) of a boundary by four or more subjects 

at each of the possible boundaries (between marked prosodic phrases).  Not only does 
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this measurement not account for chance, but their methodology guarantees at least 

4/7 (57%) agreement on all boundaries and 3/7 (43%) agreement on all 

nonboundaries.  Hearst also compared boundary placements by individuals to group 

decisions (in this case placement of a boundary by only three of seven judges was 

required to establish a “real” boundary), but she reported the kappa statistic, assuming 

the overall frequencies for boundaries and nonboundaries as estimates for the 

probability of agreement by chance [56].  In these two studies, human segmenters 

were restricted to placing boundaries between prosodic phrases (Passonneau and 

Litman) or paragraphs (Hearst), limiting the number of possible boundary locations.  

If boundaries can be placed between characters, the number of nonboundary locations 

would be so high that the probability of agreement by chance on nonboundaries would 

be extremely high, making agreement measurements uninterpretable.  Calculating only 

agreement on boundaries would have the opposite problem.  The probability of 

agreement by chance on exact boundaries would be too low to have any meaning. 

There are three important and related conceptual differences between segmentation 

and semantic component indexing: 

1. Text segmentation makes an underlying assumption that topics, documents, or 

discourse elements are distinct if they occur in different segments whereas 

multiple non-adjacent segments can comprise a single semantic component 

instance.  The presence of multiple boundaries between two units of text does 

not mean that the units of text are not in the same semantic component 

instance. 
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2. The number of boundaries placed during semantic component indexing is not, 

of itself, important.  Boundaries have an important function in semantic 

component indexing, but they are not the primary unit of interest. What matters 

is whether a term matching a query is correctly included in a semantic 

component instance.  The occurrence of multiple segments, and therefore 

multiple boundaries, in that instance is unimportant. 

3. Agreement on exact boundaries has less importance whereas agreement on 

inclusion of particular text elements in an instance is very important for 

semantic component indexing. 

As a result of these differences, none of the metrics described for evaluating text 

segmentation is likely to be useful for evaluating semantic component indexing.  

Semantic component indexing is more usefully modeled as classification of each text 

unit rather than as boundary placement. 

 

6.2.3.2. Passage Retrieval 

Passage retrieval, as discussed in Chapter 2, splits documents into subdocuments 

(using a variety of techniques) and computes the similarity of each passage to the 

query.  Passages can be used for retrieval in two ways.  First, the unit retrieved can be 

a document, with documents being ranked based on the computed relevance scores for 

passages within the document.  Second, the unit retrieved can be an individual 

passage.  Documents are usually split into passages automatically, so evaluations are 

designed to determine the effect of using passages on retrieval.  When the unit 
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retrieved is a document, standard IR metrics apply and this task does not inform our 

work with semantic components.  When the unit retrieved is a passage, and splitting 

(segmentation) is semantic, then the effect of generating passages on retrieval 

performance is estimated by comparing returned passages to a reference standard. 

Two tracks from TREC have taken such an approach, the High Accuracy Retrieval 

from Documents (HARD) Track, and the Genomics Track.  The 2004 HARD Track 

used query metadata and a brief interaction with the user to gather additional data 

about the information need and experimented with passage retrieval as well as 

document retrieval [138].  The 2006 Genomics Track required systems to return 

passages that contained answers to questions [139].  Both tracks evaluated system 

performance by using variations on existing IR metrics.  These variations use the 

proportion of characters in each returned passage that coincide with characters in the 

gold standard passages (determined by human judges) for the same topic.  The HARD 

Track used passage-level versions of recall, precision, F score, R-precision and b-pref 

for evaluation [138].  The Genomics Track developed a passage-level variation on 

Mean Average Precision (MAP).  Because the original passage MAP score can be 

manipulated by shortening all passages, or by breaking passages in half, a second 

version, PASSAGE2, concatenates the output of passages, so that each character is 

treated as a ranked document [139].  This character-based approach is analogous to the 

character-based approach we have discussed for evaluating the accuracy and 

consistency of semantic component indexing. 
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6.2.3.3. Question Answering, Novelty Detection, and Information Extraction 

A number of subdocument tasks are related to passage retrieval, and can use text 

segmentation as an intermediate step, but the target output is more specific than just a 

passage.  In this section we briefly review evaluation methods commonly used for 

question answering, novelty detection, and information-extraction systems. 

 Question-answering systems try to return an answer, or parts of the answer.  Some 

question-answering systems return a passage containing an answer; we consider such 

systems in the passage-retrieval category.  Other systems try to return exact answers.  

Answers can be facts or lists of elements that together constitute an answer.  Several 

TREC tracks (e.g., Question Answering [140],  Interactive [100], and Genomics 

[139]) have had question-answering tasks in which system output was evaluated in 

three ways: (1) using the fraction of questions for which the answers were judged (by 

human judges) as correct (for factoid questions), (2) using instance recall and instance 

precision (for list questions, for which each distinct instance of an answer to a question 

should be returned), or (3) using an aspect-level version of MAP. 

Novelty detection is closely related to question answering.  The goal is to return 

relevant text units (documents or subdocuments) that contain information about the 

query, but without redundancy [59, 141].  Ideally, each new document in a ranked list 

should contain information that is relevant and also novel relative to the documents 

already returned.  Conceptually, each ranked element can be treated as containing one 

or more aspects of the answer.  The aspects are then judged for novelty.  As with 

question-answering tasks, the unit being judged is an answer, or part of an answer.  



www.manaraa.com

 

192

Variations on existing retrieval metrics compare the retrieved elements to a gold 

standard, assessing the proportion of a complete answer that has been found and the 

precision of the ranked list of answer elements (which may consider information that 

is redundant to be equivalent to nonrelevant). 

Systems for information extraction identify certain types of information in 

unstructured text, such as entities, facts, and events, and extract the information into 

databases or templates.  Evaluation is based on the correctness and completeness of 

elements extracted into slots (compared to a reference standard) and can be reported in 

terms of recall and precision, or error rates [142, 143]. 

Common to all three of these tasks is that the evaluation is based on an answer, or 

part of an answer, which is really a concept, not a segment of text.  Comparing the 

output of these systems to a reference standard is fundamentally different from 

evaluating the accuracy or consistency of semantic component indexing.  Semantic 

component indexing identifies information pertaining to a semantic component, not a 

particular question.  Metrics based on recall or precision of returning text that 

represents an answer element are suitable for the three tasks described, but they do not 

help us decide how to evaluate semantic component indexing.  We conclude that 

methods to evaluate such systems are not likely to help us determine how best to 

evaluate semantic component indexing because the unit of interest for these tasks is an 

answer, or part of an answer, not a segment of text (although the answer may be 

derived from, or composed of, a segment of text). 
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6.2.4. Keyword Indexing 

In this section we consider how to evaluate keyword indexing.  The library and 

information science community has studied both inter-indexer consistency and the 

quality of automated indexing results compared to human expert indexing.  For 

measuring the accuracy, or correctness, of keyword indexing relative to a reference 

standard, Rolling suggests formulas that are equivalent to recall and precision [116].  

Soergel suggests measuring completeness (equivalent to recall) and purity (the 

proportion of all terms that should have been rejected that were correctly rejected, or 

in other words TN/(TN + FP)) [144].  Lancaster describes a (weighted) scoring system 

that adds points for correctly assigned terms and subtracts points for incorrectly 

assigned terms (terms not in the reference standard) [22]. 

Several candidate formulas for measuring consistency appear in the indexing 

literature, but two predominate.  We follow Rolling [116] and represent each formula 

in terms of a, b, and c, where a is the number of terms used by one indexer, b is the 

number of terms used by the second indexer, and c is the number of terms used in 

common by both indexers.  The two formulas are:  

consistency = 2c / (a + b) (9) 
 
and  
 
consistency = c / (a + b – c) (10) 

  
Rolling presents six different formulas for calculating inter-indexer consistency 

between two indexers [116].  Four of the six formulas represent variations on the 

theme of percent agreement, consisting of a ratio of items of agreement/all items and 
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two formulas consist of a ratio of items of agreement/items of disagreement.  The four 

formulas based on percent agreement differ with respect to the actual calculations of 

the numerator and the denominator.  Three of the six formulas use c as the number of 

items of agreement and three formulas use 2c as the number of items of agreement.  

Conceptually, we view these two options as corresponding to: (1) considering the 

items being agreed upon as indexing terms, for which c is the logical numerator; or (2) 

considering indexing decisions as the items being agreed upon, in which case each 

indexer makes c decisions that agree with those made by the other indexer, for a total 

of 2c decisions made by the pair of indexers.  Among the six formulas, three variations 

occur in the denominator.  Two of the variations occur in the four formulas based on 

percent agreement.  One variation (two formulas) uses the total number of terms used, 

including all duplicates, calculated as a + b.  Another variation (two formulas) uses the 

total number of unique terms, calculated as a + b – c.  The third variation occurs in the 

two formulas for items of agreement/items of disagreement.  For these two formulas, 

the denominator is the sum of the terms that are not in agreement, calculated as a + b – 

2c.  We can also view the denominator in this third variation as the number of 

decisions not in agreement. 

Rolling recommends using Formula (9), shown above.  We interpret Formula (9) 

as the ratio of the number of indexing decisions in agreement to the total number of 

indexing decisions.  Lancaster [22] and Soergel [144] both recommend using Formula 

(10), also shown above.  Formula (10) calculates the ratio of the number of terms in 

agreement to the total number of unique terms.  Funk and Reid attributed Formula (10) 
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to Hooper when they used the formula to report indexing consistency for articles from 

MEDLINE that were inadvertently indexed more than once [28].   

All of the keyword indexing consistency formulas we have discussed measure 

agreement between pairs of indexers.  Lancaster recommends calculating consistency 

for pairs of indexers, then averaging over all pairs to obtain an overall consistency 

value for a group of indexers [22].  Rolling points out that generalizing directly to 

multiple indexers from the formula he recommends would ignore the consistency 

value of terms assigned by 2 to n-1 indexers and proposes an unwieldy formula to try 

to account for partial agreement [116].  Rolling [116], Lancaster [22], and Soergel 

[144] all discuss the use of weighting to account for some indexing terms being more 

important than others, but that is beyond the scope of our interest here. 

None of the above formulas take into account the probability of agreement by 

chance.  To our knowledge there is not an existing measure of consistency that is 

appropriate for multilabel categorization and that accounts for the probability of 

agreement by chance.  As discussed in Section 6.1.2, it is not obvious what should be 

the basis for calculating expected agreement.  Assuming that all categories in a large 

vocabulary are equally likely to be chosen is not a sensible choice.  If we consider all 

keywords that were assigned at least once as the universe of keywords for the 

purposes of calculating expected agreement, we would still have to derive an expected 

distribution for the number of categories (keywords) assigned per document in 

addition to an expected distribution for use of the categories (keywords). 
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One possible approach is to assess consistency in two different ways: (1) calculate 

consistency based on multiple binary classifications, using all keywords that were 

assigned at least once as the universe of keywords and applying a measure of 

agreement appropriate for binary categorization, such as Kα;  and (2) calculate one or 

both of the traditional keyword consistency measures described above in order to 

compare results with previous studies of indexing consistency.  The design and goals 

of a study might determine whether indexing terms or indexing decisions are the 

primary unit of consistency and thereby determine a choice between the two keyword 

indexing metrics (Formulas 9 and 10 above). 

 

6.3. Implementation and Analysis of Krippendorff’s Alpha 

Krippendorff’s alpha (Kα) is a family of related metrics that has been developed by 

Klaus Krippendorff over a number of years.  All the versions of Kα are for assessing 

reliability of coded data and follow the general form of: 

 

 
(11) 

where Do is the observed disagreement among observers and De is the disagreement 

expected to occur by chance.  De is calculated by using the data from all observers to  

estimate a “true” distribution of data in categories that can be randomly sampled [52, 

145] .  Kα is a generalization of Sπ for nominal data, which is data resulting from 

assignment of objects to categories that do not have a defined ordering, such as gender 

or literary genre.  Krippendorff has extended Kα to handle ordinal, interval, ratio and 

e

o

D
D
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specialized kinds of data and to handle incomplete data (missing values) and any 

number of observers [145].  Krippendorff has also developed a version for comparing 

unitized data resulting from content analysis.  It is the unitized version of Kα that first 

attracted our attention as a metric that might be useful for comparing instances of 

semantic component indexing.  We have not found any other tasks comparable to 

semantic component indexing that have suitable metrics for calculating consistency of 

segment identification that treated the segment as the primary unit for evaluation. 

We have implemented the nominal, binary, and unitized versions of Kα as Java 

programs that read input data files for semantic component indexing instances.  In this 

section we describe the equations and algorithms for calculating Kα in some detail.  

The equations and algorithms are all based on publications by Krippendorff [52, 130, 

145], and we tested the implementations by reproducing the various example results in 

those papers.  In addition, we describe a detailed analysis of the response of the 

unitized version of Kα to various changes in data characteristics and explain why that 

analysis caused us to reject the unitized version of Kα for calculating similarity of 

semantic component indexing instances.  

Figure 6.6 summarizes the calculation of Kα  and follows the description given by 

Krippendorff [52].  The difference function δij
2 expresses the difference between a pair 

of values.  The prefixed metric subscript indicates that its calculation depends on the 
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Create an m by r reliability matrix, where m is the number of observers, r is the number of objects 
being categorized, and each cell cij in the reliability matrix contains the value assigned by observer i 
to object j. 

Create a v by v matrix of observed coincidences, where v is the number of distinct values occurring 
in the reliability matrix.  Each cell cij in the observed coincidences matrix represents occurrences of 
pairs of values for which one observer assigned value i to an object and another observer assigned 
value j to the same object.  To create the matrix, one first calculates the number of pairs of each vi-vj 
combination for each object being categorized.  If all m observers assign value vi to an object, then 
there are m(m – 1) vi-vi pairs.  If, instead, p observers assign vi and q observers assign vj and p + q = m, 
then there are p(p – 1) vi-vi pairs, q(q – 1) vj -vj pairs, p*q vi-vj pairs, and p*q vj-vi pairs.  The observed 
coincidence matrix should contain one entry contributed by each value (not one entry contributed by 
each pair) and therefore the contribution of each collection of vi-vi pairs for a given object is scaled by 
multiplying the number of vi-vi pairs by 1/(mu – 1) where mu is the number of values actually 
occurring for object u (or, in other words, the number of observers who categorized object u).   This 
factor not only scales the contribution of each value, it also adjusts the calculation for missing values 
so that each value contributes based on its participation in mu – 1 pairs.  Note that if an object has only 
been categorized once (values from the other m – 1 observers is missing data) then there are no 
comparisons to be made for that object (no possible pairs) and the number of coincidences must be 
zero for that object. 

Compute Kα as: 
 

(12) 

Figure 6.6 Calculation of Kα 
 
 
metric that is most appropriate for a particular kind of data (whether it is nominal, 

ordinal, interval, ratio, or unitized).  For nominal and binary data, the difference 

function is simple: δij
2 = 0 if and only if i = j, and  δij

2= 1 if and only if i ≠ j.  The 

numerator expresses the number of values in the coincidence matrix for which a  

categorization decision differs (the observed values disagree) and the denominator 

expresses the number of values for which the categorization decision can be expected 

to be different (the expected values disagree) if the categorization decision is random. 

For nominal and binary data, Equation (12) can be expressed as: 

 

(12b)
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where n is the total number of values that could agree (equal to twice the number of 

pairs). 

A more concrete expression of Equation (12) for nominal and binary data is: 

 

(13) 

 
where oii is the number of times that a pair of observers used category i, or in other 

words, the number in cell cii of the coincidence matrix.  Equation (13) is derived from 

the preceding expression as shown in Figure 6.7. 

The difference function for unitized data is based on comparing both the 

categorization (coding or labeling of text) and the unitization that results in 

partitioning the text into segments that belong to a unit and segments that do not 

belong to the unit (also called gaps).  The difference function for unitization is 

discussed in more detail in Section 6.4.3. 

 

6.3.1. Kα for Nominal Data 

In our work, assignment of document class and categorization of documents by 

assignment of indexing keywords both produce nominal data.  The first step in 

calculating Kα for nominal data is creation of the m by r reliability matrix for m 

indexers and r documents.  The second step, creation of the observed coincidence 

matrix, is implemented by first creating a coincidence matrix for each document, then 
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Figure 6.7 Derivation of equation for calculating Kα for nominal and binary data 
 
 

summing the corresponding cells from the coincidence matrices for individual 

documents to populate a final coincidence matrix.  The third step, calculating Kα, 

proceeds according to Equation (13), where n is the total number of values being 

compared, oii is the number of document classifications in agreement for category i (a 

document class or a keyword assignment), and ni is the number of times any observer 

classified a document as belonging to category i.  One can also find ni by adding all 

the values in the coincidence matrix for either row i or column i.  Note that n is equal 

to twice the number of pairwise comparisons used to calculate the coincidence matrix 

because a value for i is counted once in oij and again in oji, where oij is the number of 

Derivation of equation (13): 

The number of values in agreement is simply the sum of the values in the diagonal cells of the 
coincidence matrix cij where i = j.  Thus the numerator, Do, is n – ∑i oii.     The number of values 
expected to agree is calculated assuming that the frequency of a value in the entire data set, ni for 
category i, (reflecting the categorization decisions of all the observers) represents the best estimate 
of the “true” frequency of i and that calculation of expected agreement is based on random selection 
without replacement.  Therefore the number of values for category i expected to be in agreement, eii 
= n * (frequency of i to start)(frequency of i after i selected) = n *(ni/n)(ni –1)/(n – 1) = ni(ni –1)/(n – 
1).  The total number of values expected to be in agreement for v categories is: 

   n1(n1 –1)/(n – 1) + n2(n2 –1)/(n – 1) + ...+ nv(nv –1)/(n – 1). 
 
The denominator, De, is therefore: 
   n – ( (n1

2 – n1)/(n – 1) + (n2
2 – n2)/(n – 1) + ... + (nv

2 – nv)/(n – 1) ) 

Multiply the first term, n, by (n – 1)/(n – 1) and rearrange to get: 
   n(n – 1)/(n – 1) – ( ( n1

2 – n1 + n2
2 – n2 + ... + nv

2 – nv ) / (n – 1) ) 
   = ( n(n – 1) – ( n1

2 – n1 + n2
2 – n2 + ... + nv

2 – nv )  ) / (n – 1) 
   = ( n2 – n – (n1

2 + n2
2  ... + nv

2 –  n1 – n2.... – nv )  ) / (n – 1) 
   = ( n2 –  n – (n1

2 + n2
2  ... + nv

2 –  n )  ) / (n – 1) 
   = (n2 –  (n1

2 + n2
2  ... + nv

2) ) / (n – 1) 

We can therefore express the denominator as: 
  ( n2 –  ∑i ni

2 ) / (n – 1). 

Multiplying the equation (n – ∑i oii) / ( ( n2 –  ∑i ni
2 ) / (n – 1) ) by (n – 1)/(n – 1) results in Equation 

(13). 
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times observer A assigned a document to i and observer B assigned the document to j 

and oji is the number of times observer A assigned a document to j and observer B 

assigned the document to i. 

 

6.3.2. Kα for Binary Data 

Binary data is a special form of nominal data that results from assigning objects to 

exactly one of two classes.  In semantic component indexing, each unit in each 

document undergoes binary classification with respect to each semantic component for 

that document’s class.  Each unit of the text is classified as either belonging to the 

semantic component instance or as not belonging to the semantic component instance.  

As discussed in Section 6.1.1.2, we use characters as the basic unit of classification for 

semantic component indexing. 

For calculating binary Kα for semantic component indexing instances, we use one 

coincidence matrix for each of the c characters in the document, then sum the c 

coincidence matrices to populate a final coincidence matrix.  The final step is to use 

Equation (13) to calculate Kα as described for nominal data in the preceding section. 

 

6.3.3. Kα for Unitized Data 

Computation of Kα for unitized data follows the same outline as Kα for nominal 

and binary data, calculating both observed disagreement and expected disagreement, 

but is more complex than for nominal and binary data.  The difference function 

compares both the categorization (coding and labeling of text) and the unitization that 
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partitions the text into units and gaps, but it does so by comparing the units and gaps 

for a given category identified by one observer to the units and gaps for the same 

category identified by another observer.  To calculate Do, we compare each section (a 

unit or a gap) identified by one observer to each section identified by another observer, 

and we repeat this over all pairs of observers.  De is intended to reflect comparisons 

between all possible unitizations that could be derived from the overall number of 

sections identified by all observers, the lengths of the sections, and whether each 

section is a segment or a gap.  The distribution of sections among observers and the 

positions of the observed sections within the document are ignored and treated as 

characteristics that are subject to randomization.  We discuss each part of the 

computation in more detail below.  Several publications discuss calculating Kα for 

unitized data and provide the equations [52, 145, 146].  The equations and notation 

used here are the same as in Krippendorff’s book about content analysis [52].  The 

most complete description of how to calculate Kα for unitized data, and the 

justification for the calculation of expected disagreement, is published in Sociological 

Methodology [146].  

Observed disagreement for a particular category c, Doc, is calculated as: 

 

(14) 

where m is the number of observers, L is the length of the document, i and j are 

observers, and g and h are numbers that identify individual sections identified by 

observers i and j, respectively.  The difference function δ is a measure of the 
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difference between two sections, so δcigjh
2 is the squared difference between section ig 

and section jh for the unitizations with respect to category c.  For δ to equal 0, two 

sections must be identical with respect to starting location, length, and label (a 

segment or a gap for category c).  Nonzero values of δ reflect the amount of deviation 

from a perfect match between two units identified by different observers (in the same 

document). 

Krippendorff defines δcigjh
2 as shown in Figure 6.8.23  The first condition for δcigjh

2  

applies if two units (not gaps) overlap but are not identical.  When units meet this 

condition, the value for the difference function is the sum of the squared lengths of the 

nonoverlapping parts at either end of their intersection.  The second condition applies 

if a unit ig is contained in a gap jh.  If so, then the difference is the squared length of 

the unit ig.  The third condition applies if unit jh is contained in a gap ig, and the 

 

Figure 6.8 Definition of the difference function for calculating Kα for unitized data 
 

                                                 
 
 
23 The first condition, marked with an asterisk, is expressed differently in one source [52], but is likely a 
typographical error.  The equation shown here matches the equation given in another source [145].  
Krippendorff has also expressed the condition as ig ∩ jh ≠ Ø [146]. 

 (bcig – bcjh)2 + (bcig + lcig – bcjh – lcjh)2  iff wcig=wcjh=1 and –lcig < bcig – bcjh < lcjh 
* 

δcigjh
2 = lcig

2             iff wcig=1, wcjh=0 and lcjh – lcig ≥ bcig – bcjh ≥ 0 
 lcjh

2             iff wcig=0, wcjh=1 and lcjh – lcig ≤ bcig – bcjh ≤ 0 
                0             otherwise 
 
where 
 
wcig = 0 iff section ig is not a unit (it is a gap with respect to category c) 
 1 iff section ig is a unit (with respect to category c) 
 
and where bcig and bcjh refer to the beginning positions of sections ig and jh and lcig and lcjh refer to 
the lengths of sections ig and jh. 
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difference is the squared length of jh.  The fourth condition applies when both sections 

are gaps, when both sections are units and they overlap perfectly, and when two 

sections do not intersect at all. 

By defining the difference function for partially overlapping units as the sum of 

the squared lengths of the nonoverlapping portions, agreement about the center of a 

unit is valued more highly than agreement about the periphery of a unit.  In other 

words, the calculation discounts the disagreement if a nested unit is centered in the 

containing unit (there is agreement about the center but not about the periphery) 

compared to the disagreement that is calculated if a nested unit of the same size is 

positioned at one end of the containing unit.  Valuing agreement about the text in the 

center of a unit might make sense for content analysis if we believe that the center of a 

text unit reflects the core meaning of the text unit.  Assigning different values to 

agreement depending on its position within a segment does not make sense for 

semantic component indexing.  A search term is either in the semantic component 

instance or it is not. 

It is important to note that if a unit partially overlaps with a gap, it does not satisfy 

conditions 1, 2, or 3 and so the difference is 0.  However, the portion of the unit that 

does not overlap the gap will overlap another unit and that difference will be part of 

the overall calculation.  Note also that the beginning positions and lengths of sections 

must be given as integer values from a measurable continuum, such as character offset 

from the start of a document. 

Expected disagreement for category c, Dec, is calculated as: 
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(15) 

where N is the total number of units identified by all m observers.  The equation for 

Dec assumes that there is a population of sections (units and gaps) of various lengths 

that is derived from the collection of sections identified by all the observers.  It further 

assumes that those sections can be randomly distributed among the locations in the 

document and among the m observers.  To derive an expected disagreement, the 

equation iterates through all possible ways in which the document can be unitized with 

the given number and sizes of the units and gaps and calculates the resulting 

disagreement. 

Instead of repeating the entire justification for the calculation of Dec, we 

summarize the contribution of each part of the equation.  Additional detail is available 

elsewhere [146].  The numerator sums the differences calculated for each possible 

unitization.  The left hand part of the numerator generates the difference between two 

overlapping units that meet the first condition in the difference function and results 

from an algebraic simplification of summing the squares of the non-overlapping 

portions of the units, summed over all possible ways the units could overlap.  The 

right hand part of the numerator generates the difference between a containing gap (jh) 

and the nested unit (ig).  If the conditions are met (the second or third conditions in the 

difference function), the difference contributed is the square of the length of the unit, 

ig.  If jh is not a gap, wcjh = 1, 1 – wcjh = 0, and this term does not contribute to the 

expected difference.  The factor (lcjh – lcig + 1) is the number of possible positions in 
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the document in which the two sections could occur.  The denominator of Dec adjusts 

the weighting of Dec so that it corresponds with that of Doc.  Each observer contributes 

some number of sections (units and gaps) whose lengths sum to the length of the 

document, L.  Because the numerator iterates through all sections for each observer, 

and compares them to the sections for every other observer, we have lengths mL being 

compared to (mL – 1) lengths, and being considered for up to L possible positions in 

the document.  The term being subtracted adjusts for not comparing units to 

themselves and for not comparing gaps to gaps. 

After implementing Kα for unitized data, we calculated binary and unitized Kα for 

hypothetical pairs of semantic component instances to compare the behavior of the 

two metrics when particular data characteristics are manipulated.  Unless otherwise 

specified, the document length was the same for each test and each of the two 

instances being compared had exactly one unit.  The tests addressed the following 

questions: 

1. What is the effect of varying the unit length when the proportion of overlap 

(length of overlap/length of unit) is fixed? 

2. What is the effect of varying the position of a nested unit relative to the 

containing unit when the position of the containing unit within the document is 

fixed? 

3. What is the effect of increasing the number of nested units when the overall 

amount of agreement (overlap) is fixed? 
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4. What is the effect of changing the position within the document of two 

overlapping units when the relative positions of the units, and the amount of 

overlap, is fixed? 

5. What is the effect of changing the position of two independent units within the 

document when the length of the two units is fixed? 

Figure 6.9 illustrates the test data.  Each line represents a document of length 100.  

The dashed (and raised) lines are units, the solid lines are gaps, len is the length of the 

unit, and st indicates the starting position of the unit as an offset from the beginning of 

the document.  Our findings are summarized below. 

1. As expected, progressively increasing the length of the units, while 

maintaining an overlap of 80% of unit length, results in a progressive decrease 

in the value of Kα because the amount of disagreement is increasing.  Both 

versions of Kα behave as expected, although the exact values differ.  Kα for 

three lengths of units, overlapped by 80%: 

Length of unit 10 20 40 
Unitized 0.9484 0.9340 0.8461 
Binary 0.7789 0.7513 0.6683 

 
 

2. For a fixed amount of overlap, binary Kα does not change when the position of 

the nested unit is changed, as expected.  The value of unitized Kα decreases 

when a unit of length 24 is shifted from overlapping the center of a unit of 

length 40 to overlapping only the beginning 60% of the other unit.  This 

change occurs largely because the difference function is calculated by  
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Figure 6.9 Tests to assess the behavior of unitized Kα and binary Kα 
 
 

 

1. Vary unit length; proportion of overlap is 80% of unit length. 
len=10 |___-----__________________________________________| 
 |____-----_________________________________________| 

len=20 |___----------_____________________________________| 
  |_____----------___________________________________| 

len=40 |___--------------------___________________________| 
 |_______--------------------_______________________| 

2. Vary position of the nested unit; position of the containing unit is fixed; nested unit is 60% of 
containing unit. 

len=40 |___--------------------___________________________| 
begin |___------------___________________________________| 

len=40 |___--------------------___________________________| 
center |_______------------_______________________________| 

3. Vary number of nested units; nested units equal (fixed) 60% of containing unit.  
1 seg  |___--------------------___________________________| 
       |_______------------_______________________________| 

2 seg  |___--------------------___________________________| 
       |___------________------___________________________| 

3 seg  |___--------------------___________________________| 
       |___----____----____----___________________________| 

4. Vary position of units within document; fixed lengths, overlap (80%), and positions relative to 
each other. 

st=6   |___----------_____________________________________| 
       |_____----------___________________________________| 

st=40  |____________________----------____________________| 
       |______________________----------__________________| 

5. Vary position of units within document; fixed lengths; no overlap. 
st=6   |___----------_____________________________________| 
st=30  |_______________----------_________________________| 
st=56  |____________________________----------____________| 
st=74  |_____________________________________----------___| 
st=76  |______________________________________----------__| 
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summing the squares of the nonoverlapping lengths on either side of the nested 

unit.  For a given total length of nonoverlap between a nested unit and its 

containing unit, the minimum difference—and therefore the maximum Kα—

occurs when the nested unit is centered with respect to the containing unit.  

However, changes in the sizes of the gaps on either side of the nested unit 

affect the calculation of expected difference as well.  Modifying the difference 

function, so that the nonoverlapping lengths are first summed and then 

squared, brings the calculation closer to our desired behavior (that Kα not 

change when the position of a nested unit is shifted relative to the containing 

unit but remains nested) but does not eliminate the difference.  Some 

difference persists due to the effect of the length of segments and gaps on De, 

which is discussed under point 4 below. 

Position Center of unit Start of unit 
Unitized 0.8401 0.7133 
Binary 0.6342 0.6342 

 
3. For a fixed amount of overlap, binary Kα does not change when the overlap is 

partitioned into multiple units.  The value of unitized Kα decreases 

considerably when the nested unit is partitioned into multiple units.  The 

change in Kα is mostly due to a substantial increase in the value for the 

observed difference, but the expected difference also changes somewhat due to 

the changes in segment and gap lengths.  This behavior is undesirable for 

evaluating semantic component indexing, although it might be desirable for 

content analysis when the number of units can be important. 
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Number of units 1 unit 2 units 3 units 
Unitized 0.8401 –0.8560 –1.5356 
Binary 0.6342 0.6342 0.6342 

 
4. Shifting the units to a different position in the document but maintaining their 

positions relative to each other changes unitized Kα.  The mathematical 

explanation is that when the expected disagreement is calculated, the lengths of 

all units and gaps contribute to the collection of sections that are compared to 

each other.  When the starting positions for the two units are 6 and 10, gaps of 

length 6 and 10 are contributed to the expected disagreement calculation.  The 

units, both of length 20, cannot be nested in the gaps of length 6 or 10.  When 

the starting positions are 40 and 44, the gaps on either side of the units are 

large enough to contain the units.  Different values are calculated for De, and 

therefore for Kα, yet there is no reason to believe that the second pair of units 

is more likely to occur by chance than the first pair of units.  This behavior is 

undesirable for evaluating semantic component indexing, because the two pairs 

are logically equivalent, and suggests a flaw in the version of Kα for unitized 

data.   

Starting position Start = 6 Start = 40 
Unitized 0.9340 0.9190 
Binary 0.7513 0.7513 

 
5. Varying the positions of independent units within the document does not cause 

a change in binary Kα.  We compared the first instance shown under point 5 in 

Figure 6.9 (the unit starts at position 6) to each of the other four instances.  In 

each instance there is one unit of length 20.  The units in different instances 
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start at different locations, but no instance has a unit that overlaps with the unit 

in the first instance.  All of the pairs of unit positions have the same binary Kα.  

Two pairs of unit positions have the same unitized Kα but the other two pairs 

have different values of unitized Kα.  The mathematical explanation is the 

same as for varying the positions of overlapping units.  This behavior of the 

metric is unsatisfactory. 

Starting pos. Start = 6 & 30 Start = 6 & 56 Start = 6 & 76 Start = 6 & 74 
Unitized –0.7851 –0.7851 –0.5698 –0.5954 
Binary –0.2438 –0.2438 –0.2438 –0.2438 

 
 
 
6.4. Evaluation Recommendations 

In this section, we discuss the findings from our analyses of indexing tasks and 

candidate metrics and offer recommendations for measuring accuracy and consistency 

for semantic component indexing and keyword indexing.  In Table 6.1, we summarize 

our conclusions with respect to the most appropriate metrics for assessing accuracy 

and consistency of both semantic component indexing and keyword indexing.  Two 

principles guided our analyses of consistency metrics: (1) consistency metrics should 

account for the probability of agreement by chance, and (2) consistency metrics should 

reflect agreement, not just correlation. 

 

6.4.1. Evaluation of Semantic Component Indexing 

Semantic component indexing consists of two tasks, assigning document class and 

identifying segments of text that belong to semantic component instances.  Document 
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classification is an example of single-label nominal categorization. Semantic 

component indexing can be conceptualized either as binary classification of each unit 

of text (such as a character) with respect to each semantic component associated with 

the assigned document class or as unitizing the text for each semantic component by 

identifying the segments within semantic component instances. 

We have not found any tasks that are identical to semantic component indexing 

and that can provide an appropriate measure of agreement.  We analyzed a variety of 

tasks related to identifying the text that belongs to a semantic component instance.  In 

this group we include text segmentation, passage retrieval, question answering, 

novelty detection, and information extraction.  All of these tasks involve selecting and 

manipulating text at a subdocument level.  We considered the evaluation methods that 

have been used for these tasks and conclude that the unit of evaluation is a critical 

determinant of evaluation approach.  Measuring agreement based on the sizes of text 

fragments (using units such as the number of characters to measure size) that are 

assigned to the same semantic component by different indexers is suitable for 

semantic component indexing.  Measurements of agreement that are based on 

counting the number of boundaries placed at the same location or counting the number 

of answer elements are not applicable to semantic component indexing. 

Identifying semantic component instances is similar to content analysis, but there 

is a critical difference with respect to the importance of the number of segments.  For 

semantic component indexing, we care only about whether units of text are classified 

the same, either as belonging or as not belonging to a semantic component instance.  
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In content analysis, the partitioning of text into some number of units that share a label 

can be important and therefore adjacent segments must be treated as distinct segments 

even if they have the same label. 

Based on our analysis of the semantic component indexing task, we identified the 

following criteria for a metric that measures agreement between semantic component 

indexing instances: 

• It allows comparing instances of each semantic component separately. 

• For segments of a given length, it results in more agreement when the length of 

the overlap or the length of the nested segment is larger. 

• It treats near misses the same as far misses. 

• For segments of a given length, it results in the same measured agreement 

regardless of the position of the nested segment within the containing segment. 

• It allows semantic component instances to be discontiguous.  It measures 

overlap between instances and is agnostic regarding whether such overlaps are 

contiguous and whether the number of segments is the same. 

If we treat semantic component indexing as binary classification of each text unit 

(such as a character) we can use metrics for comparing instances of binary 

classification to evaluate semantic component indexing.  The binary classification 

approach allows comparison of each semantic component separately.  For measuring 

accuracy, recall and precision applied to characters both satisfy each of our criteria.  

For measuring consistency, both Kα for binary data and the kappa statistic satisfy our 
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criteria.  Kα has the advantage of being able to handle missing data (and thus different 

numbers of indexers for each document). 

If we treat semantic component indexing as unitizing the text for each semantic 

component, Kα for unitized data is the only candidate metric for consistency.  Kα for 

unitized data compares sequences of segments, which correspond to the entities of 

interest for semantic component indexing.  Like Kα for binary data, Kα for unitized 

data results in more agreement when the length of an overlap or the length of a nested 

segment is increases.  However, it rewards nested segments that are centered more 

than it rewards uncentered nested segments, it results in different values when the 

number of nested segments changes, and the measured agreement can vary when 

segments appear in different locations within a document, even if the total size of 

overlapping and independent segments does not change.  These undesirable 

differences in unitized Kα, which occur in response to segments appearing in different 

locations within documents, result from the way that unitized Kα uses data about the 

lengths of segments and gaps from semantic component instances to calculate how 

much agreement (or disagreement) can be expected to occur by chance.  Although Kα 

for unitized data initially appeared likely to be the best solution for assessing the 

consistency of semantic component indexing, we conclude that it is not suitable for 

measuring consistency of semantic component indexing.   

We conclude that recall and precision are useful for assessing the accuracy of 

document classification for semantic component indexing and that Kα for nominal 

data is useful for assessing the consistency of document classification. We also 
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conclude that semantic component indexing can be treated as binary classification of 

each unit of text (such as a character) for evaluating semantic component instances.  

Recall and precision are useful for comparing semantic component indexing to a 

reference standard (measuring accuracy) and Kα for binary data is useful for 

comparing peer instances of semantic component indexing (measuring consistency).  

The kappa statistic is also suitable for measuring consistency if there is no missing 

data. 

 

6.4.2. Evaluation of Keyword Indexing 

Keyword indexing is an example of multilabel categorization.  Depending on the 

situation, keyword indexing can also be considered as multiple binary classifications.  

Recall and precision are appropriate measures for assessing accuracy of keyword 

indexing as compared to a reference standard.  For assessing consistency, agreement 

metrics for keyword indexing exist, although they are not entirely satisfactory.  

Existing metrics ignore the possibility of agreement by chance, and are designed for 

comparing only two indexing instances.  However, use of existing metrics may be 

useful for comparing keyword indexing consistency to results published in other 

studies.  When keyword indexing uses a very small controlled vocabulary, or when a 

variety of indexing instances are available to indicate a universe of possibly 

appropriate terms that an indexer can reasonably be assumed to have considered, it can 

also be reasonable to treat the indexing as multiple binary classifications over the 

limited indexing term possibilities.  This approach provides the advantage of being 
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able to correct for the possibility of agreement by chance.  In such situations, Kα for 

nominal data is an appropriate measure of agreement and allows calculation of 

consistency for an arbitrary number of indexers. 

 
Table 6.1 Evaluation methods for assessing indexing accuracy and consistency 

Quality 
Indexing Type 

Accuracy Consistency 

Semantic components 
a) Document  
    Classification 
 
 
 
b) Semantic component   
    identification 

 
Recall and Precision 
– of document 
classification, per 
document class 
 
Recall and Precision 
– of characters, in each 
component 

 
Nominal Kα 
– agreement on document class 
– per document, over all documents 
 
 
Binary Kα 
– agreement on inclusion/exclusion in the 
semantic component 
– by characters, over all characters in each 
component 

Keywords Recall and Precision 
– of keywords 
– per document, and 
– per vocabulary 

Binary Kα  
– agreement on keyword inclusion 
– by keywords, over all keywords either 
suggested by at least one indexer in the study 
or appearing in the reference standard 
 
Traditional consistency formulas: 
– consistency = c / (a + b – c) 
– consistency = 2c / (a + b) 

 
 

6.5. Summary 

In this chapter we discussed the motivation for choosing metrics to evaluate 

agreement between instances of semantic component indexing.  Accuracy is a measure 

of agreement between an indexing instance and a reference standard whereas 

consistency is a measure of agreement among two or more indexing instances in 

which no instance is preferred over any other instance.  We analyzed the task of 

semantic component indexing and developed a set of criteria for desirable metrics of 
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agreement for semantic component indexing.  We also discussed keyword indexing 

and developed criteria for metrics of agreement for keyword indexing. 

Next, we compared semantic component indexing and keyword indexing to other 

tasks and discussed existing metrics for related tasks.  From our comparisons we 

identified three groups of candidate metrics, which we further analyzed: (1) metrics 

for comparing instances of text categorization, (2) metrics for comparing instances of 

keyword indexing, and (3) a metric for comparing instances of unitization in content 

analysis.  We described three versions of Kα that we implemented for assessing the 

consistency of nominal, binary, and unitized data.  To assess the behavior of two 

versions of Kα against our criteria for desirable metrics, we created hypothetical 

semantic component indexing data and calculated binary Kα and unitized Kα for pairs 

of data.   

We concluded that Kα for binary data satisfies our criteria, but Kα for unitized data 

does not satisfy our criteria.  Finally, we summarized our findings and proposed 

metrics for calculating the accuracy and consistency of semantic component and 

keyword indexing.  In Chapter 7 we apply these metrics to data from our indexing 

study. 
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Chapter 7    Semantic Component Indexing: Feasibility and Quality 

 

In this chapter we report on our experiences with semantic component indexing.  

In Section 7.1, we describe in detail a comparative study of semantic component 

indexing and keyword indexing.  In Section 7.2 we discuss our experience with having 

371 documents indexed with semantic components to support the searching study 

described in Chapter 8.  In Section 7.3 we discuss our findings and offer an outlook 

for semantic component indexing.  We summarize in Section 7.4. 

 

7.1. Comparative Study of Semantic Component Indexing and Keyword 

Indexing 

We performed a comparative indexing study described below in collaboration with 

sundhed.dk.  Sundhed.dk uses a combination of full-text and manual keyword 

indexing.  The keyword indexing is performed by a variety of participants in 

sundhed.dk who index documents as just one part of their jobs.  Some indexers are 

physicians who author documents for sundhed.dk, and others have backgrounds in 

nursing or information technology.  Few have formal backgrounds in library science 

or have formal training in the principles and practice of keyword indexing.  Indexers 

have the option of using an automated indexing application that suggests keywords, 

where they can then either accept or reject individual keywords.  The automated 

indexing application is part of Ultraseek [147], the commercial search engine that 

sundhed.dk uses to power its search portal.  Interviews with indexers for sundhed.dk, 
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during study design and at the end of study sessions, indicated that some indexers use 

the application heavily, some indexers do not use it at all, and some indexers look at 

its output but delete most of the suggestions.  The disparate backgrounds and highly 

distributed nature of the indexing might have a substantial effect on indexing quality 

in the operational system.    

The high-level goal of this study was to assess the feasibility of semantic 

component indexing.  To do so, we studied indexers who were experienced with the 

documents and keyword indexing procedures of sundhed.dk but who were new to 

semantic component indexing.   To give some context to the semantic component 

indexing data, we compared it to keyword indexing of the same documents by the 

same group of indexers.  The general questions we sought to answer were: How 

difficult is semantic component indexing?  How much time does it take?  Will 

indexers understand the semantic component indexing task and the semantic 

component schema well enough to able to index documents in a way that accurately 

reflects the intent of semantic component indexing? 

More specifically, we formulated the following questions: 

1. Is semantic component indexing of sundhed.dk documents more accurate than 

keyword indexing compared to a reference standard? 

2. Is semantic component indexing of sundhed.dk documents more consistent than 

keyword indexing of the same documents? 

3. Is semantic component indexing of sundhed.dk documents faster than keyword 

indexing? 
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4. Is semantic component indexing of sundhed.dk documents easier than keyword 

indexing, as perceived by the indexers? 

In the next section we describe the methods we used to investigate these questions. 

The study received prior approval from the Portland State University Human Subjects 

Research Review Committee. 

 

7.1.1. Methods 

In this section we first describe the experimental setup for the comparative study.  

We describe the following elements: the semantic component schema and the keyword 

indexing vocabularies, the indexer participants, the documents to be indexed, the study 

design, and the materials we used.  Next we describe how we analyzed and evaluated 

the data regarding the accuracy and consistency of indexing. 

 

7.1.1.1. Experimental Design 

In Chapter 4, we described our initial analyses of the sundhed.dk document 

collection (Section 4.1.1) and subsequent refinements to the semantic component 

schema (Section 4.3).  Here we elaborate on the schema development for the indexing 

study.  In the early stage of designing this study we conducted two interviews.  The 

first interview was with Dr. Peter Vedsted, a physician and researcher at the 

University of Århus in Denmark.  Dr. Vedsted was closely involved in Praxis.dk, a 

regional predecessor to sundhed.dk, and has been instrumental in the development of 

sundhed.dk.  The second was a group interview with four people who currently index 
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documents for sundhed.dk.  In both interviews we first introduced the semantic 

components model and its potential uses, then asked for participants’ feedback.  As a 

result of their feedback, we decreased the number of semantic components associated 

with each document class from about ten to about five.  We then selected three 

document classes for study, based on frequency in the collection and importance to the 

target searching audience, which were family practice physicians.  The final document 

classes and corresponding semantic components that we used are shown in Table 7.1. 

With the assistance of sundhed.dk, we recruited 16 volunteer indexers to 

participate in the study.  We based recruitment on willingness to participate, indexer 

status with sundhed.dk, and availability on one of the two dates of the study. 

On the day of the indexing study, we first asked the indexers to complete a brief 

questionnaire that collected information about their experience with medical concepts 

and terms and about their experience with indexing.  Table 7.2 and Figures 7.1 and 7.2 
 
 
Table 7.1 Document classes and semantic components used in the indexing study 

Document Type Short Name Semantic Components 
Evaluation: How to diagnose or evaluate the 
problem 
Management: How to treat, manage or control 
the problem 
Referral: How to refer a patient with the 
problem to a specialist or special service 

Documents about a Clinical 
Problem or Condition 

Clinical Problem 

About: About the problem 
Preparation: How to prepare for the procedure 
Practical: Practical details 
Description: Description of the procedure 
Risks: Risks of the procedure 

Documents about Diagnostic 
or Therapeutic Procedures 

Procedure 

Aftercare: What to expect after the procedure 
Service or right: Information about the service 
or right 
Inclusion criteria: The indication or conditions 
that the patient should fulfill to get the service 

Documents about rights and 
services to patients 

Services 

Sequence: the course of events, the sequence 
of actions 



www.manaraa.com

 

222

summarize the characteristics of the participants.  Our participants had a wide range of 

backgrounds, representing the variety of people who index for sundhed.dk, but they 

did not constitute a random sample of the indexer population.  Most of the indexers 

 
 
Table 7.2 Characteristics of indexers 

Characteristic Range Mean ± Std. 
Dev. 

Months of experience indexing documents for sundhed.dk  0 – 60 22.2 ± 16.5 
Months of experience dealing with medical information 8 – 420  121.6 ± 98.2 
Self reported level of experience with indexing; treated as interval 
scale (1 = Not at all, 5 = Very experienced) 

1 – 5 2.7 ± 1.2 

Self reported level of experience with medical information; treated 
as interval scale (1 = Not at all, 5 = Very experienced) 

2 – 5 3.8 ± 1.1 

Self reported level of knowledge about medical concepts and 
vocabulary; treated as interval scale (1 = Not at all, 5 = Very 
knowledgeable) 

1 – 5 3.6 ± 1.2 

 
 
 

Figure 7.1 Characteristics of indexers: training in indexing 
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 were quite experienced with medical information and were fairly experienced with 

indexing for sundhed.dk.  One indexer was new to indexing.  Only a few of the 

indexers had any formal training in indexing and most of the indexers had received no 

training at all.  Four of the indexers had professional training in medicine or nursing 

and three of the indexers were medical secretaries.  Over half of the indexers had no 

formal medical training. 

We chose twelve documents to be indexed in the study, four documents 

representing each of the three document classes.  We chose documents we believed to 

be representative of each class and that varied in topic, length and complexity.  Some 

 
 

Figure 7.2 Characteristics of indexers: formal medical training 
 

0

1

2

3

4

5

6

7

8

9

10

None Physician Nurse Medical Secretary

N
um

be
r o

f i
nd

ex
er

s



www.manaraa.com

 

224

 
documents appeared to be written for health professionals while others were written 

for consumers.  The documents contain varying amounts of specialized medical 

vocabulary.  Table 7.3 shows the titles (translated from Danish to English) and 

document class for each of the twelve documents we used in the study.  The length 

shown is the number of paper pages that resulted from printing the web pages. 

 
Table 7.3 Document characteristics 

Document 
Id Document class Length 

(pages) Title 

1 Procedure 1 Hip replacement 
2 Clinical Problem 7 Diabetes mellitus 
3 Services 1 Psychological help 
4 Procedure 3 Radiation therapy 
5 Clinical Problem 1 Asthma in children 
6 Services 2 Free hospital choice 
7 Clinical Problem 4 Dementia 

8 Procedure 2 ERCP – Endoscopic Retrograde Cholangio 
Pancreatography 

9 Services 1 Family education (for families of patients with 
dementia) 

10 Clinical Problem 7 Osteoporosis 
11 Procedure 1 CT-scanning of the kidney and urinary tract 
12 Services 1 Waiting times/free hospital choice 

 
For the keyword indexing portion of the experiment we used the three controlled 

vocabularies currently in use by sundhed.dk: ICPC, ICD-10, and the Almen 

Thesaurus.  These vocabularies are described in Section 4.1.1.  (All the keyword 

indexing in sundhed.dk and in our study is in Danish).  We asked indexers to assign 

keywords from any or all of the vocabularies as they normally would when indexing 

documents for the production system.  We also allowed indexers to assign “free” 

keywords that do not appear in any of the vocabularies, the same as they can for the 

production system. 
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We collected all indexing information on paper.  We did so in order to eliminate 

any biases that might be introduced by using a software prototype to collect indexing 

output.  User interfaces for the two types of indexing could affect the relative ease or 

difficulty of making and recording indexing decisions, which could potentially affect 

time, attitudes, and the quality of indexing decisions.  We did not think it would be 

feasible to create computer interfaces for keyword and semantic component indexing 

that were equivalent with respect to ease and speed of use.  We did provide electronic 

access to the three controlled vocabularies using the Metadata++ software [148] that 

allows either browsing (via a collapsible tree structure) or searching of the 

vocabularies.  Each indexer had access to either a desktop computer or a laptop that he 

could use to view the controlled vocabularies. 

We created several paper forms to collect the indexing data.  These forms are 

shown in Appendix A, Figures A.1 – A.3.  The first form (A.1) is for recording 

keyword indexing decisions.  The form has slots for the indexer to record indexing 

concepts as well as for recording the keywords chosen and the source vocabulary for 

each keyword, if any.  (The indexing concepts chosen by the indexers will be the 

subject of a related study by Dr. Nielsen, one of the collaborators in this project.)  

There are two forms for semantic component indexing.  One form (A.2) contains a 

description, in English, of each document class.  We asked each indexer first to choose 

one of the three document classes.  When he was finished with classifying the 

document, we gave the indexer a second form that asked him to index the document 

using a particular document class, even if the class was not the same as the class that 
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he had chosen.  (We did this so that we could compare indexing instances among the 

indexers.  Indexing instances based on different document classes would not be 

comparable).  The semantic components form for each document class, also in 

English, has a list of the semantic components for the class and a description of each 

semantic component.  The form for Clinical Problem documents appears in the 

appendix (A.3).  We created similar documents for the other two document classes.  

To index the semantic components, we asked the indexers to draw a line around each 

segment and label it with the appropriate semantic component label.  Figure 7.3 shows 

a scanned image of a document after it had been indexed by one of the study 

participants.  (The handwritten letters and numbers at the top of the page are codes 

that were added by the research team at the end of the indexing study to help with 

document management).  We supplied the indexers with colored pens to facilitate 

distinguishing the different components but we did not require the indexers to use any 

particular color scheme, or even require them to use the colored pens.  We did not 

want to add to the cognitive task by asking the indexers to associate semantic 

component labels with particular colors. 

We collected information about how long each indexer took to index a document 

by using a computer program that was integrated into the Metadata++ interface [149] 

for searching and browsing the indexing vocabularies.  The timing interface displayed 

the titles of the documents in the order they were to be indexed and highlighted the 

current title.  We asked each indexer to click a button when he started indexing a 

document, and to click a second button when he was finished with that document. 
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Figure 7.3 Scanned example of an indexing instance  
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Each indexer participated in a single half-day indexing session.  We conducted 

three indexing sessions, in two different cities on two consecutive days, in order to 

recruit a variety of participants.  The first session was held in Århus, the second two in 

Odense.  Although we had conducted a pilot test before the experiment, we assumed 

that individual indexers would take variable amounts of time to index the documents.  

We were not sure that all the indexers would index all the documents in the allotted 

time, and we wanted to be sure that each indexer used both methods of indexing.  We 

therefore organized the indexing sessions into two blocks, and each block into two 

sub-blocks.  In the first block, each participant indexed three documents using 

keywords (one sub-block) and three documents using semantic components (another 

sub-block).   In the second block, we gave each participant three additional documents 

to index using keywords and three additional documents to index using semantic 

components.  Not all participants completed all twelve documents, as is discussed 

below.  We allowed participants to proceed at their own pace and we encouraged them 

to take a break between the two blocks.  At the end of the indexing session, we asked 

each indexer to complete a final survey that asked questions about the perceived 

difficulty of each type of indexing and that solicited their opinions about the potential 

usefulness of semantic component indexing. 

We designed a randomization scheme for assigning a sequence of documents and a 

sequence of indexing techniques to each indexer that would achieve the following 

effects: 
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1. We balanced the order of indexing techniques so that, in each indexing session, 

half the participants started with keyword indexing and half started with 

semantic component indexing. 

2. We systematically varied the order of document presentation. 

3. We allocated the sequences of document presentation to indexers in pairs so 

that, for each document in a sequence, one indexer in the pair indexed the 

document with keyword indexing and the other indexer in the pair indexed the 

same document with semantic component indexing. 

4. We assigned one document from each class to each sub-block in order to be 

certain that at least some documents of each of the three document classes 

would be indexed by all (or nearly all) of the indexers. 

5. We assigned every indexer the same six documents (in some order) in the first 

block to ensure that at least some of the documents would be indexed by as 

many indexers as possible.  We then assigned every indexer the other six 

documents (in some order) in the second block. 

For each of the two blocks in an indexing session, we constructed six sequences of 

documents, each sequence beginning with a different document in each sub-block.  

Table 7.3 illustrates the six document sequences.  The document id numbers in Table 

7.4 correspond to the document id numbers in Table 7.3. All of the Services 

documents were short (1 page or less) and we assigned two Services documents to 

each block (one document in each sub-block).  For the Procedure and Clinical 

Problem documents, we assigned one fairly short document (1 page and 1-4 pages, 
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respectively) and one moderately long document (2-3 pages and 7 pages, respectively) 

of each type to each block.  This allocation resulted in six documents for each block 

(three in each sub-block). 

We started with 24 indexer identification numbers, from 1 to 24, inclusive.  We 

then randomly assigned four indexer ids to each of the six document sequences.  To 

balance the order of indexing techniques, we designated two of the four identification 

numbers that had been assigned to each sequence to start with keyword indexing and 

two to begin with semantic component indexing.  We then had two pairs associated 

with each sequence; each pair shared the same document sequence but started with a 

different indexing technique.  In other words, we had twelve unique document-

indexing technique assignments that were organized in pairs.  Because we had 

recruited more than twelve indexers, we generated enough indexer ids for two 

instances of every unique sequence (24 ids).  We then allocated identification numbers 

(and thus sequences) to the indexing sessions in pairs, so that two indexers in each 

session received the same sequence, but one started with keyword indexing and one 

with semantic component indexing.  If a session had an odd number of participants, 

the unused sequence in a pair was the first to be allocated to the next session.  After 

twelve identification numbers (one instance of each of the twelve unique 

combinations, which was six paired instances of the six document sequences) had 

been allocated, we randomly chose two additional pairs to be allocated, for a total of 

16 of the possible 24 identification numbers.  This organization meant that each 

document sequence was used at least twice, once beginning with semantic component 
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indexing and once beginning with keyword indexing.  Two sequences were used four 

times, twice for each order of indexing techniques.  Within each session we randomly 

assigned the indexers to the allocated sequences of documents and indexing 

techniques. 

 
Table 7.4 Sequences of document presentation 

Sequence 1 2 3 4 5 6 
Block 1 – Sub-block 1 (keyword or semantic component indexing) 

Document 
ids 

1 
2 
3 

2 
3 
4 

3 
4 
5 

4 
5 
6 

5 
6 
1 

6 
1 
2 

Block 1 – Sub-block 2 (semantic component or keyword indexing) 

Document 
ids 

4 
5 
6 

5 
6 
1 

6 
1 
2 

1 
2 
3 

2 
3 
4 

3 
4 
5 

Break 
Block 2 – Sub-block 3 (keyword or semantic component indexing) 

Document 
ids 

7 
8 
9 

8 
9 

10 

9 
10 
11 

10 
11 
12 

11 
12 
7 

12 
7 
8 

Block 2 – Sub-block 4 (semantic component or keyword indexing) 

Document 
ids 

10 
11 
12 

11 
12 
7 

12 
7 
8 

7 
8 
9 

8 
9 

10 

9 
10 
11 

 
 

7.1.1.2. Evaluation of Indexing 

To evaluate the accuracy and consistency of semantic component indexing, we 

used the indexing prototype described in Section 3.1 to enter and electronically 

capture the indexing data from the indexers’ original manually marked paper copies of 

the documents.  In the indexing application, we had the option of using either the 

HTML version of each document or a plain text version derived from the HTML 

document.  Using the HTML version introduces a small amount of artifact because the 

presence of HTML markup tags affects the character position and segment length of 
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marked text.  Because the indexers marked paper copies (that do not have HTML tags, 

although the appearance is affected by the HTML markup) we report here the results 

derived from plain text copies of the documents.  However, we entered data using both 

versions of the documents and found that the results are very similar, generally 

varying no more than 1 – 2%.  Using the HTML version is unlikely to affect 

conclusions drawn from the indexing instances and is easier for an indexer because the 

indexing application uses the HTML tags to render the document so that the document 

appears the same in the application as it would in the web portal. 

We entered the keyword indexing data into a spreadsheet, recording the string, as 

written by the indexer, and the source of the keyword.  (Each keyword was either from 

one of the three controlled vocabularies or was a “free” keyword.)  We normalized the 

keywords chosen from the controlled vocabularies by eliminating differences in case 

and obvious misspellings.  If a keyword did not obviously match a term from the 

indicated vocabulary, then we used the keyword as it was written by the indexer.  For 

free keywords we converted the words to lower case but we made no other alterations. 

In Chapter 6 we discussed the properties of semantic component and keyword 

indexing and the criteria for suitable evaluation measures of each.  We concluded that 

both kinds of indexing should be evaluated with respect to two qualities: (1) accuracy 

and (2) consistency.  For this study, we evaluate the accuracy of the indexing instances 

produced by each participant in the indexing study by comparing the instances to a 

reference standard produced by an indexing expert and a domain expert on the 

research team.  We evaluate consistency by comparing the indexing instances 
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produced by the participants in the indexing study, treating all indexers as peers.  As 

proposed at the end of Chapter 6, we use the evaluation measures shown in Table 7.5, 

which is identical to Table 6.1. 

Semantic component indexing and keyword indexing are different tasks.  The units 

of evaluation for the two types of indexing (document class assignment and 

assignment of characters to semantic components versus keyword assignment) are 

fundamentally different.  As a result, the actual values for recall, precision, and Kα are 

not directly comparable across the two types of indexing.  The data presented here 

allow comparison at a general conceptual level, but do not permit statistical 

comparison.  We present mean values, and standard deviation when appropriate, to 

summarize the data from various perspectives and to facilitate drawing general 

conclusions regarding the potential usefulness of semantic component indexing in 

comparison to an established form of indexing. 

 

7.1.2. Results 

First we present the quality data for semantic component indexing, then the quality 

data for keyword indexing.  Next we present the data regarding the time required for 

indexing.  Lastly, we present the data from the questionnaires regarding the indexers’ 

perceptions of the two indexing methods. 
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Table 7.5 Evaluation methods for assessing indexing accuracy and consistency 
Quality 

Indexing Type 
Accuracy Consistency 

Semantic components 
a) Document  
    Classification 
 
 
 
b) Semantic component   
    identification 

 
Recall and Precision 
– of document 
classification, per 
document class 
 
Recall and Precision 
– of characters, in each 
component 

 
Nominal Kα 
– agreement on document class 
– per document, over all documents 
 
 
Binary Kα 
– agreement on inclusion/exclusion in the 
semantic component 
– by characters, over all characters in each 
component 

Keywords Recall and Precision 
– of keywords 
– per document, and 
– per vocabulary 

Binary Kα  
– agreement on keyword inclusion 
– by keywords, over all keywords either 
suggested by at least one indexer in the study 
or appearing in the reference standard 
 
Traditional consistency formulas: 
– consistency = c / (a + b – c) 
– consistency = 2c / (a + b) 

 
 

7.1.2.1. Semantic component indexing quality 

We first consider the quality of the document classifications for semantic 

component indexing and then consider the quality of semantic component 

identification.  Although the indexers were asked to choose the document class that 

best fit the document, in three cases an indexer recorded more than one document 

class.  The three cases involved three different indexers and three different documents.  

All three documents were about clinical problems that were classified by the indexer 

as being both Clinical Problem and Procedure documents.  In Table 7.6 we show two 

versions of the results that provide an upper and a lower bound on the accuracy of 

document classification in this study: (1) we treat the three cases of dual classification 

as having been classified correctly, ignoring the incorrect class (“best”), and (2) we 
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treat the three cases of dual classification as having been classified incorrectly, 

ignoring the correct class (“worst”).  The mean recall and precision is the average of 

the recall and precision, respectively, for the three document classes.24 

Overall, the accuracy of document classification was fairly good.  The primary 

source of confusion was misclassifying Clinical Problem documents as Procedure 

documents.  Discussion with the indexers revealed some confusion about what kinds 

of documents, and information, each document class should contain.  One possible 

explanation is related to multiple senses for the word procedure.  The word procedure 

can be defined as: 

1. “an act or a manner of proceeding in any action or process; conduct.” 

2. “a particular course or mode of action.” [150]  

Danish healthcare is heavily subsidized by the government and referral from 

family practitioners to specialists is carefully managed through a variety of policies 

and guidelines.  The documents in the sundhed.dk health portal often contain 

information about the procedures (that implement the policies and guidelines) that 

should be followed by health care professionals and patients, and text about 

procedures in this sense can appear in many kinds of documents, including all three of 

the document classes used in this study. 

                                                 
 
 
24 We do not report microaveraged values because, as noted in Chapter 6, microaveraged recall and 
precision for single-label categorization both equal the sum of all true positives (TP) over the total 
number of categorizations performed. 
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However, the word procedure is also commonly used as jargon in American 

medical care settings to refer specifically to substantial diagnostic examinations and 

therapeutic interventions, particularly when such events involve invasive techniques, 

such as surgical operations, endoscopic examinations, and angiography (examinations 

of the circulatory system involving injection of dye and radiological imaging).  It is 

the latter sense of the word that we intended in designating the class of documents we 

called Procedure.  In our study, there were two ways in which this distinction may 

have been blurred.  First, there is the difference between the American and Danish 

healthcare systems and word usage that is customary in the two settings.  The other is 

the translation between the English and Danish languages.  Although the indexers in 

our study spoke both English and Danish, English was not their first language and 

subtle differences in word usage may have caused confusion. 

Table 7.7 shows the recall and precision for identifying each semantic component 

in each of the three document classes.  The rows labeled “All” show the results for all 

of the semantic components in a particular document class combined.  The table 

displays the results using both microaveraging and macroaveraging.   

As discussed in Chapter 6, microaveraging averages the results of all decisions 

over all categories.  For semantic component indexing, microaveraging means that we 

calculated recall and precision by summing all the true positives (TP), all the false 

positives (FP), and all the false negatives (FN) before calculating recall and precision.  

Microaveraging gives equal weight to every character, regardless of the size of 

individual semantic component instances.  We do not report a standard deviation for 
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the microaveraged values because the microaveraged value is actually the result of 

dividing one sum (the sum over all categories of the TP for each category) by another 

sum (the sum over all categories of the TP + FN for recall and of the TP + FP for 

precision) and results in a single value.  It is not the mean of several values for which a 

standard deviation can be calculated.  Macroaveraging averages the recall and 

precision values from each indexing instance over the group of interest, such as all the 

instances of a particular semantic component, and gives equal weight to each indexing 

instance. 

In general, we see similar trends from both methods of summarizing the data.  

There are some notable differences however.  For example, the precision for the 

sequence semantic component is dramatically different depending upon whether 

micro- or macro-averaging is applied.  This difference occurred because many 

indexers did not designate any text as belonging to the sequence component, which 

resulted in a precision calculation of 0/0 for some of the individual indexing instances 

for the sequence component.  By treating 0/0 as a precision equal to one, the 

macroaveraged precision is quite high.  With microaveraging, because some indexing 

instances did designate some text as belonging to the sequence component, there are 

no zeros in the calculation.  The very small number of TP characters and a moderate 

number of FP characters result in a low precision with microaveraging. 

Recall values are mostly greater than 0.5, with the exception of a few semantic 

components for which recall is substantially lower.  Many of the precision values are 

even higher, in the range of 0.75 to 0.95, again with a few notable exceptions. 
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Table 7.6 Accuracy of document classification 
Measure Recall Precision 

Doc. Class Best Worst Best Worst 
Clinical Problem 0.7 0.59 1.0 1.0 
Procedure 0.97 0.97 0.74 0.68 
Services 0.97 0.97 0.97 0.97 
Mean ± SD 0.87 ± 0.16 0.84 ± 0.22 0.90 ± 0.14 0.88 ± 0.17 
 
Table 7.7 Accuracy of semantic component identification by semantic component 
Document 
Class 

Semantic 
Component 

Recall  
4 documents 
microavg. 

Recall±SD 
4 documents 
macroavg. 

Precision 
4 documents 
microavg. 

Precision±SD 
4 documents 
macroavg. 

Clinical 
Problem 

Evaluation 
Management 
Referral 
About 
All 

0.56 
0.53 
0.62 
0.74 
0.57 

0.60 ± 0.31 
0.56 ± 0.40 
0.62 ± 0.31 
0.76 ± 0.40 
0.63 ± 0.36 

0.71 
0.86 
0.43 
0.50 
0.66 

0.66 ± 0.37 
0.81 ± 0.32 
0.59 ± 0.41 
0.75 ± 0.36 
0.70 ± 0.37 

Procedure Aftercare 
Description 
Practical 
Preparation 
Risks 
All  

0.47 
0.60 
0.33 
0.52 
0.45 
0.52 

0.62 ± 0.36 
0.66 ± 0.34 
0.24 ± 0.30 
0.73 ± 0.41 
0.56 ± 0.37 
0.58 ± 0.39 

0.90 
0.94 
0.21 
0.63 
0.93 
0.77 

0.96 ± 0.15 
0.93 ± 0.15 
0.55 ± 0.48 
0.83 ± 0.33 
0.94 ±0.13 
0.84 ± 0.32 

Services Inclusion crit. 
Sequence 
Service 
All  

0.57 
0.25 
0.77 
0.69 

0.51 ± 0.44 
0.25 ± 0.46 
0.80 ± 0.32 
0.61 ± 0.43 

0.74 
0.01 
0.83 
0.72 

0.84 ± 0.28 
0.70 ± 0.46 
0.79 ± 0.35 
0.77 ± 0.37 

 
 

Tables 7.8 and Table 7.9 show the accuracy of semantic component indexing by 

document and by indexer, respectively.  The differences between microaveraging and 

macroaveraging are less striking, probably because a larger number of components are 

involved in each calculation, smoothing out the effects of indexing instances and 

semantic components.  Values vary considerably across indexers, and to a somewhat 

lesser extent across documents. 

Tables 7.10 – 7.12 show consistency data for semantic component indexing.  Table 

7.10 shows the nominal Kα for the agreement among all of the indexers with respect to 

the document class assigned to the 12 documents in the study.  Kα = 1.0 would  



www.manaraa.com

 

239

 
Table 7.8 Accuracy of semantic component identification by document 
Document Recall 

Microaverage 
Recall ± SD 

Macroaverage 
Precision 

Microaverage 
Precision ± SD 
Macroaverage 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

0.72 
0.54 
0.65 
0.42 
0.85 
0.70 
0.57 
0.68 
0.66 
0.55 
0.67 
0.73 

0.74 ± 0.37 
0.56 ± 0.33 
0.59 ± 0.45 
0.33 ± 0.29 
0.74 ± 0.39 
0.59 ± 0.13 
0.63 ± 0.39 
0.70 ± 0.31 
0.66 ± 0.33 
0.61 ± 0.35 
0.65 ± 0.43 
0.63 ± 0.48 

0.74 
0.61 
0.63 
0.71 
0.83 
0.75 
0.60 
0.88 
0.69 
0.71 
0.83 
0.84 

0.89 ± 0.26 
0.61 ± 0.39 
0.72 ± 0.38 
0.72 ± 0.41 
0.68 ± 0.47 
0.81 ± 0.35 
0.79 ± 0.31 
0.93 ± 0.17 
0.76 ± 0.43 
0.75 ± 0.26 
0.86 ± 0.31 
0.83 ± 0.30 

 
 
 
Table 7.9 Accuracy of semantic component identification by indexer 
Indexer Recall 

Microaverage 
Recall ± SD 

Macroaverage 
Precision 

Microaverage 
Precision ± SD 
Macroaverage 

1 
2 
3 
4 
6 
7 
8 
9 
10 
11 
12 
14 
15 
16 
17 
19 

0.66 
0.75 
0.30 
0.45 
0.24 
0.60 
0.55 
0.72 
0.47 
0.70 
0.54 
0.42 
0.73 
0.74 
0.73 
0.81 

0.62 ± 0.35 
0.60 ± 0.40 
0.44 ± 0.43 
0.57 ± 0.40 
0.43 ± 0.38 
0.60 ± 0.38 
0.64 ± 0.35 
0.69 ± 0.33 
0.56 ± 0.40 
0.71 ± 0.36 
0.55 ± 0.37 
0.49 ± 0.45 
0.63 ± 0.45 
0.50 ± 0.71 
0.79 ± 0.33 
0.75 ± 0.33 

0.71 
0.71 
0.62 
0.70 
0.43 
0.75 
0.80 
0.82 
0.66 
0.76 
0.57 
0.73 
0.88 
0.74 
0.86 
0.61 

0.80 ± 0.31 
0.89 ± 0.21 
0.85 ± 0.28 
0.73 ± 0.38 
0.71 ± 0.42 
0.68 ± 0.45 
0.73 ± 0.39 
0.80 ± 0.35 
0.66 ± 0.46 
0.70 ± 0.42 
0.75 ± 0.35 
0.86 ± 0.28 
0.86 ± 0.34 
0.75 ± 0.50 
0.90 ± 0.24 
0.78 ± 0.34 

 
indicate perfect agreement among all the indexers for all documents and Kα = 0 would 

indicate agreement no better than chance.  As we did for accuracy, we show two 

values, a best and a worst value to set upper and lower bounds on consistency.  The 

two values result from selecting either the “correct” or the “incorrect” class in the 
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three instances in which an indexer recorded two document classes instead of one 

class. 

 
Table 7.10 Consistency of document classification 
Classification Nominal Kα  
Semantic Component Document Classes – Best 
Semantic Component Document Classes – Worst 

0.73 
0.67 

 
 

Tables 7.11 and 7.12 show consistency data for the assignment of text (characters) 

to semantic components.  In Table 7.11 the data is summarized by semantic 

component (averaged for the four documents in the document class that contains each 

component) and in Table 7.12 the data is summarized by document. 

The consistency of semantic component indexing is highly variable.  For some 

components the indexers are fairly consistent while for others they are not at all 

consistent.  The consistency is particularly low for the semantic components in 

Services documents.  This inconsistency suggests that the indexers did not have a 

shared understanding of what kind of information belonged in each component.  There 

are at least two possible explanations:  

1. Our choice of semantic components for this document class may not have 

matched the documents’ contents well.  The inconsistency suggests that the 

semantic component schema should be reconsidered, to determine whether 

these documents were unusual representatives of the class or whether a revised 

schema would be more effective for the documents in this collection. 

2. Our descriptions of these semantic components were not sufficiently clear to 

convey to the indexers the intended information content for each component. 
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Table 7.11 Consistency of semantic component identification by semantic component 
Document 
Class 

Semantic 
Component 

Mean Kα ± SD 
(4 documents in each document class) 

 
 

Clinical 
Problem 

Evaluation 
Management 
Referral 
About 
All  

0.42 ± 0.12 
0.35 ± 0.42 
0.30 ± 0.24 
0.48 ± 0.41 
0.39 ± 0.30 

 
 
 
 

 
Procedure Aftercare 

Description 
Practical 
Preparation 
Risks 
All  

0.65 ± 0.15 
0.39 ± 0.17 
0.18 ± 0.21 
0.61 ± 0.36 
0.59 ± 0.36 
0.48 ± 0.30 

 
 
 
 
 

 
Services Inclusion criteria 

Sequence 
Service 
All  

0.08 ± 0.23 
-0.07 ± 0.04 
0.25 ± 0.15 
0.09 ± 0.20 

 
 
 

 
 
 

There is also another possible explanation for the markedly low consistency 

values.  The explanation is related to the consistency measurement itself.  The 

ordering of the consistency values for the semantic components in the Services 

documents is the same as the ordering of the recall values.  The recall and consistency 

are highest for the service component and lowest for the sequence component. 

 
Table 7.12 Consistency of semantic component identification by document 
Document   Mean Kα ± SD 

(of all semantic components in the document) 
 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

 
 

 

0.46 ± 0.35 
0.21 ± 0.16 
0.25 ± 0.30 
0.35 ± 0.23 
0.50 ± 0.30 
0.05 ± 0.11 
0.40 ± 0.48 
0.66 ± 0.11 
0.04 ± 0.24 
0.44 ± 0.16 
0.48 ± 0.41 
0.01 ± 0.07 
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However, the recall values for the Services semantic components are in the same range 

as the recall values for semantic components in other document classes whereas the 

consistency values for the Services semantic components are substantially lower than 

those for most of the semantic components for the other document classes.  These 

results may be due, at least in part, to the correction by Kα for agreement by chance.  

Kα (and the other similar agreement metrics discussed in Chapter 6) are affected by 

the underlying prevalence of the categories (in this case semantic components) [119].  

The Services documents are all short and tend to be dominated by a single semantic 

component, either service or inclusion criteria.  The other semantic components in the 

documents are either very small or absent.  The expected agreement is always higher 

when the distribution among categories is skewed.  Therefore, for binary Kα, if a 

semantic component instance is either very large (nearly all of the characters in a 

document are in the semantic component instance) or very small (very few of the 

characters in a document are in the instance), then the expected agreement for that 

semantic component is quite high.  For any given observed agreement, the higher the 

expected agreement the lower the value of Kα.  Therefore it is not too surprising that 

the agreement for the sequence semantic component, which averages only 4.25 

characters per document in the reference standard, is near zero, meaning it is not 

different from agreement by chance.  Similarly, the practical component of the 

Procedure documents has the poorest consistency and is also relatively small, 

averaging less than 10% of the document text in the reference standard overall and 

less than 3% in two of the Procedure documents.   
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However, distribution of text in the semantic components is not the only 

explanation for the Kα values.  We can see from inspecting the raw data that not all the 

semantic components with low Kα values had skewed distributions and not all 

semantic components with skewed distributions had low values of Kα.  For example, 

of the two documents with the lowest Kα for the practical component, only one has a 

very small amount of text in the component, as identified in the reference standard.  

Also, the reference standard for Document 5 includes text in only two of the four 

semantic components for the Clinical Problem class.  Despite a skewed distribution, 

the agreement measured by Kα is 0.5 and none of the individual semantic components 

has Kα of less than 0.24.  Therefore, while a particularly skewed distribution of text 

for a particular semantic component (that is, either most indexers included a very 

small, or a very large, proportion of the document in the component) can affect the 

value of Kα, in general Kα reflects agreement, or lack of agreement, among the 

indexers. 

Because this is the first study of semantic component indexing, we cannot compare 

our results to any other experimental data.  We also cannot say what level of Kα is a 

good, or acceptable, level of agreement for indexing.  Krippendorff [52] has stated that 

“The choice of reliability standards should always be related to the validity 

requirements imposed on the research results, specifically to the costs of drawing 

wrong conclusions.”  For content analysis, Krippendorff has suggested relying only on 

variables with Kα > 0.800 and to draw only tentative conclusions for variables with Kα 

between 0.667 and 0.800 [52].  The levels of Kα in our study are mostly below 
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Krippendorff’s suggested threshold for reliability in content analysis.  For indexing, 

we are not drawing conclusions from data, but instead we are establishing a level of 

agreement between indexers to assess the quality of indexing.  We do not know what 

level of Kα for indexing is required to support enhanced searching.  Establishing 

standards for semantic component indexing consistency will require comparing 

consistency results with search effectiveness over a range of indexing and searching 

studies, using a variety of domains and document collections.  Our study is a baseline 

experiment that provides descriptive data that can be compared with data from future 

studies, which could eventually be used to establish guidelines for indexing quality. 

 

7.1.2.2. Quality of keyword indexing 

Tables 7.13 – 7.16 show the accuracy of keyword indexing as calculated by 

comparing each indexer’s choice of keywords to the keywords assigned in the 

reference standard.  Each table shows the recall and precision as determined by both 

microaveraging (calculating by summing the TP, FP, and FN over all items of interest 

before calculating recall and precision) and macroaveraging (averaging individual 

recall and precision values over all items of interest). 

Microaveraging gives equal weight to each keyword, regardless of the keyword’s 

source, and is therefore independent of the number of keywords chosen from each 

vocabulary.  The macroaveraged values are obtained by first calculating the recall and 

precision for each indexer’s use of each vocabulary, then averaging these values.  This 

method gives equal weight to each indexing vocabulary-indexing instance 
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combination.  It is not uncommon in our data for the reference standard and the 

indexing instance being evaluated to contain no keywords from a particular 

vocabulary.  This decision to choose no keywords results in division by zero when 

calculating recall and precision.  As discussed in Chapter 6 (Section 6.3.1.1), 

occurrences of 0/0 when calculating recall provide no useful information regarding an 

indexer’s recall performance and therefore we did not include such occurrences in the 

macroaverage calculation for recall.  The omission of keywords from a particular 

vocabulary in both the reference standard and an indexing instance does provide some 

information about an indexer’s precision.  An occurrence of 0/0 indicates agreement of 

the indexer with the reference standard and we therefore treated precision calculations 

of 0/0 as equal to one for that vocabulary-document combination.   

Table 7.13 shows the accuracy by document.  The microaveraged recall and 

precision are quite low.  The indexers generally did not choose many of the same 

keywords as those in the reference standard and also chose keywords that did not 

appear in the reference standard.  As Table 7.13 shows, the different approaches to 

calculating precision can have a very large effect on the precision value.  Instances of 

0/0 (no keywords assigned from a vocabulary) were so common that macroaveraged 

precision was quite high, even though the microaveraged precision was quite low.  

This high macroaveraged precision means that indexers often concurred with the 

reference standard by not finding any appropriate keywords from a given vocabulary.  

When they did choose keywords, their choices often did not appear in the reference 

standard. 
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Table 7.13 Accuracy of keyword indexing by document 
Document Recall 

Microaverage 
Recall ± SD 

Macroaverage 
Precision 

Microaverage 
Precision ± SD 
Macroaverage 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

0.13 
0.13 
0.09 
0.10 
0.19 
0.04 
0.17 
0.02 
0.13 
0.11 
0.11 
0.09 

0.14 ± 0.33 
0.35 ± 0.47 
0.10 ± 0.23 
0.16 ± 0.35 
0.38 ± 0.47 
0.01 ± 0.04 
0.28 ± 0.36 
0.01 ± 0.02 
0.21 ± 0.39 
0.25 ± 0.42 
0.12 ± 0.27 
0.03 ± 0.08 

0.21 
0.17 
0.12 
0.14 
0.37 
0.12 
0.24 
0.03 
0.27 
0.33 
0.22 
0.19 

0.74 ± 0.43 
0.74 ± 0.42 
0.72 ± 0.42 
0.70 ± 0.45 
0.85 ± 0.30 
0.88 ± 0.31 
0.62 ± 0.41 
0.61 ± 0.49 
0.79 ± 0.39 
0.79 ± 0.39 
0.80 ± 0.36 
0.85 ± 0.34 

 
 
 
 
 
Table 7.14 Accuracy of keyword indexing by document class 
 
 

Recall 
Microaverage 

Recall ± SD 
Macroaverage 

Precision 
Microaverage 

Precision ± SD 
Macroaverage 

Clinical Problem 
Procedure 
Services 

0.15 
0.09 
0.09 

0.32 ± 0.42 
0.12 ± 0.29 
0.08 ± 0.23 

0.25 
0.15 
0.16 

0.75 ± 0.39 
0.71 ± 0.44 
0.81 ± 0.37 

 
 

The effect of the sparseness of the keyword data on the macroaveraged precision 

values is also reflected in the mean values by document class shown in Table 7.14.  

The macroaveraged recall for the Clinical Problem documents was noticeably higher 

than the microaveraged value because of the occurrence of indexing instances with 

assignment of a keyword that coincided with the only keyword in the reference 

standard from that vocabulary.  Weighting these instances with a perfect recall for a 

single keyword as highly as other instances, and eliminating instances where no 

keywords were assigned in the reference standard, resulted in a recall more than twice 

as high as the microaverage recall.  Fewer keywords were assigned, and fewer 
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keywords coincided with the reference standard, for the other two document classes.  

The use of few keywords is probably because the controlled vocabularies are not well-

suited to the Procedure and Services documents.  Neither ICPC nor ICD-10 were 

designed for document indexing.  The Almen thesaurus is intended for document 

indexing, but the keywords in the vocabulary, like those in ICPC and ICD-10, mostly 

represent concepts related to health and disease.  Terms that represent specific medical 

treatments or examinations, or that represent concepts related to services provided by 

the healthcare system, are uncommon in all three vocabularies.  Note that these three 

vocabularies are currently in use in the operational sundhed.dk portal and are familiar 

to the participants in the indexing study.  Although these results suggest that the 

vocabularies are not ideal for some of the documents in the portal, we are not aware of 

any more suitable vocabularies that are available in Danish. 

Tables 7.15 and 7.16 show the accuracy of keyword indexing by vocabulary and 

by indexer, respectively.  Accuracy and precision is the highest for ICPC.  ICPC is 

also the smallest of the vocabularies, which may facilitate finding appropriate 

keywords and may result in fewer choices between keywords with similar meanings.  

The Almen thesaurus had the next highest recall and precision, and is also the next 

smallest vocabulary.  ICD-10 is a very large vocabulary that is designed for coding 

diagnoses and contains multiple codes related to certain diseases.  It is not surprising 

that accuracy was low for ICD-10.  The lowest accuracy was for unrestricted 

keywords, which also is not surprising given an infinite universe of terms and the lack 

of any normalization for word variations (such as alternate spellings, different verb 
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tenses, or use of synonyms).  The accuracy varied somewhat by indexer.  The 

indexers’ precision  was consistently better than their recall.  The relatively high 

macroaveraged precision values reflect the frequent occurrence of agreement with the 

reference standard by not choosing any appropriate keywords from a given 

vocabulary. 

 
 
Table 7.15 Accuracy of keyword indexing by vocabulary 
Vocabulary Recall 

Microaverage 
Recall ± SD 

Macroaverage 
Precision 

Microaverage 
Precision ± SD 
Macroaverage 

Almen Thes. 
ICPC 
ICD-10 
Free keywords 

0.21 
0.31 
0.10 
0.04 

0.26 ± 0.37 
0.31 ± 0.44 
0.11 ± 0.30 
0.04 ± 0.09 

0.28 
0.46 
0.23 
0.08 

0.67 ± 0.42 
0.82 ± 0.36 
0.82 ± 0.38 
0.72 ± 0.42 

 
 
 
 
 
Table 7.16 Accuracy of keyword indexing by indexer 
Indexer Recall 

Microaverage 
Recall ± SD 

Macroaverage 
Precision 

Microaverage 
Precision ± SD 
Macroaverage 

1 
2 
3 
4 
6 
7 
8 
9 
10 
11 
12 
14 
15 
16 
17 
19 

0.14 
0.10 
0.11 
0.12 
0.15 
0.10 
0.08 
0.23 
0.12 
0.06 
0.14 
0.16 
0.18 
0.05 
0.10 
0.15 

0.15 ± 0.30 
0.13 ± 0.30 
0.17 ± 0.38 
0.13 ± 0.29 
0.21 ± 0.38 
0.26 ± 0.41 
0.18 ± 0.39 
0.32 ± 0.43 
0.14 ± 0.29 
0.09 ± 0.29 
0.17 ± 0.35 
0.11 ± 0.24 
0.27 ± 0.44 
0.06 ± 0.10 
0.15 ± 0.29 
0.20 ± 0.38 

0.32 
0.24 
0.45 
0.19 
0.35 
0.11 
0.15 
0.44 
0.2 

0.14 
0.4 

0.20 
0.64 
0.05 
0.11 
0.29 

0.81 ± 0.34 
0.80 ± 0.38 
0.92 ± 0.26 
0.75 ± 0.40 
0.78 ± 0.39 
0.71 ± 0.42 
0.79 ± 0.41 
0.73 ± 0.41 
0.60 ± 0.47 
0.84 ± 0.37 
0.80 ± 0.37 
0.69 ± 0.42 
0.90 ± 0.29 
0.21 ± 0.38 
0.65 ± 0.44 
0.78 ± 0.40 
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The results for consistency of keyword indexing appear in Tables 7.17 – 7.19.  

These three tables show the consistency by document, by document class, and by 

vocabulary, respectively.   

Table 7.17 shows the Kα and the values for the two traditional consistency 

formulas for keyword usage by document.  For calculating consistency by document 

we treated each keyword-source pair as a single keyword, thus combining the 

keywords from all vocabularies.  In other words, the same string, such as “Asthma,” 

from two different vocabularies (or as a free keyword and from a controlled 

vocabulary) are considered distinct keywords.  Kα produces a single value for the 

consistency between an arbitrary number of indexers, while the traditional formulas 

only calculate consistency for a pair of indexers.  We therefore report a mean 

consistency value that is the average across all pairs of indexers for the traditional 

consistency formulas.  With a few exceptions, the consistency values are quite low.  

Most Kα values suggest that agreement is no better than would be expected by chance.  

Generally, documents with the lowest values of Kα also have low values calculated by 

the two traditional consistency formulas.  An exception is Document 6.  Inspection of 

the indexing data shows that six pairs of indexers had traditional consistency values of 

1.0 because four indexers did not assign any keywords at all to Document 6.  

Document 12 had one such pair.  If we omit pairs of indexers who assigned no 

keywords, Document 6 has consistency values of 0.02 and 0.03 for traditional 

formulas 1 and 2, respectively.  Document 12 has consistency values of 0.04 and 0.05 

for traditional formulas 1 and 2, respectively. 
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Table 7.17 Consistency of keyword indexing by document 
Document  Binary Kα  

(all vocabularies) 
Traditional 1 ± SD 

consistency = c / (a + b – c) 
Traditional 2 ± SD 

consistency = 2c / (a + b) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

–0.08 
0.001  
–0.08 
0.02 
0.32 
–0.07 
0.26 
–0.08 
–0.02 
0.27 
–0.06 
–0.12 

0.05 ± 0.13 
0.18 ± 0.19 
0.05 ± 0.11 
0.19 ± 0.30 
0.33 ± 0.23 
0.23 ± 0.41 
0.27 ± 0.18 
0.05 ± 0.11 
0.09 ± 0.14 
0.29 ± 0.13 
0.04 ± 0.09 
0.08 ± 0.24 

0.07 ± 0.17 
0.27 ± 0.24 
0.08 ± 0.16 
0.24 ± 0.31 
0.45 ± 0.25 
0.24 ± 0.41 
0.4 ± 0.18 

0.08 ± 0.17 
0.13 ± 0.21 
0.43 ± 0.16 
0.06 ± 0.14 
0.10 ± 0.26 

 
 
Table 7.18 Consistency of keyword indexing by document class 
Document Class Mean Kα ± SD 

(four documents) 
Traditional 1 ± SD 

consist. = c / (a + b – c) 
Traditional 2 ± SD 

consist. = 2c / (a + b) 
Clinical Problem 
Procedure 
Services 

0.21 ± 0.14 
–0.05 ± 0.05 
–0.07 ± 0.04 

0.27 ± 0.20 
0.08 ± 0.20 
0.12 ± 0.12 

0.39 ± 0.22 
0.12 ± 0.23 
0.14 ± 0.14 

 
Table 7.18 shows the same data as Table 7.17 after averaging the Kα values for the 

four documents in each document class and after averaging all the pairwise 

consistency values across all documents in a class (instead of averaging the values for 

the pairs for a single document).  Although the raw numbers are different for each 

method of measuring consistency, the ordering across document class is the same.  

Clearly, consistency was higher for the Clinical Problem documents than for the 

Procedure and Services documents, although consistency is generally low.  Only the 

Services document class is affected by agreement due to choosing no terms.  If pairs of 

indexers who chose no terms for a document are eliminated from consideration, the 

consistency for the Services document class drops to 0.05 and 0.07 for traditional 

formulas 1 and 2, respectively. 
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The consistency values by document class reported in Table 7.18 are based on 

combining terms from all vocabularies.  If, instead, we look at the usage of each of the 

three controlled vocabularies (eliminating free keywords from consideration) we find 

substantial differences in the number of indexers who chose no terms from a 

vocabulary.  There were 15 instances of an indexer choosing no terms from a 

vocabulary while indexing a document for Clinical Problem documents, 28 instances 

for Procedure documents, and 68 instances for Services documents.  This data 

suggests that while the controlled vocabularies might have been mostly adequate for 

Clinical Problem documents, they were less useful for Procedure documents and 

much less useful for the Services documents. 

For consistency by vocabulary, we calculated the Kα consistency values for use of 

each vocabulary in each document separately, then averaged the values from all 

documents for each vocabulary.  We also calculated values for the traditional 

consistency formulas for each pair of indexers for each document-vocabulary pair 

separately, then averaged the values across all indexer pairs and all documents for 

each vocabulary.  When neither indexer in a pair of indexers being compared assigned 

a keyword from a vocabulary (or from any vocabulary when calculating consistency 

by document), both consistency formulas yield 0/0.  In these cases we followed the 

same reasoning we used in calculating precision.  We treated the consistency as 1.0 

because not choosing a keyword reflects agreement between the indexers. 

Table 7.19 shows the consistency data by vocabulary.  By all measures, 

consistency is best when the indexers used ICPC.  Consistency is next best using 
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keywords from the Almen thesaurus when measured by Kα, but is better with ICD-10 

when measured with either of the two traditional consistency formulas.  However, the 

ICD-10 results are heavily influenced by the number of pairs who chose no keywords 

from ICD-10.  Although for each of the vocabularies there are some pairs of indexers 

who chose no keywords from the vocabulary, the Almen thesaurus has the fewest such 

pairs (five) while ICD-10 had the most (79 pairs).  ICPC and free keywords had 

intermediate numbers of pairs (53 and 39, respectively).  If we eliminate such pairs 

from consideration, then the consistency for the Almen thesaurus is much closer to 

that for ICPC.  For Traditional Formula 1, the consistency becomes 0.17 and 0.20 for 

the Almen thesaurus and ICPC, respectively.  For Formula 2, consistency becomes 

0.38 and 0.35 for the Almen thesaurus and ICPC, respectively.  Eliminating pairs that 

chose no keywords from ICD-10 and chose no free keywords reveals the substantial 

failure to agree on keywords from those sources.  Consistency becomes 0.07 and 0.02 

for ICD-10 and free keywords, respectively, for Formula 1, and 0.07 and 0.03, 

respectively, for Formula 2. 

 
Table 7.19 Consistency of keyword indexing by vocabulary 

Vocabulary Mean Kα ± SD Traditional 1 
consistency = c / (a + b – c) 

Traditional 2 
consistency = 2c / (a + b) 

Almen Thes. 
ICPC 
ICD-10 
Free 
All 

0.03 ± 0.21 
0.09 ± 0.25 
-0.05 ± 0.06 
-0.07 ± 0.05 
0.03 ± 0.16 

0.18 ± 0.34 
0.35 ± 0.45 
0.33 ± 0.47 
0.16 ± 0.35 
0.16 ± 0.24 

0.21 ± 0.36 
0.37 ± 0.46 
0.33 ± 0.47 
0.16 ± 0.35 
0.21 ± 0.28 

 
 

Kα calculations are based on binary decisions for each keyword (the keyword is 

either chosen, or not chosen).  Kα gracefully handles comparisons over an arbitrary 
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number of indexers and also comparisons in which keywords are used frequently or 

infrequently.  The traditional formulas suffer from the limitation of comparing one 

pair of indexers at a time and also from yielding undefined values when no keywords 

are chosen by either indexer in a pair.  However, using two different methods for 

handling 0/0 values in the two traditional formulas, either omitting them or treating 

them as representing perfect agreement, helps to highlight the amount of agreement 

due to not choosing keywords versus the amount of agreement due to keyword 

choices.  Overall, the three approaches to calculating consistency generally provide 

similar information regarding the relative consistency across vocabularies or across 

documents (or groups of documents).  Using multiple methods for assessing 

consistency provides greater confidence in the conclusions drawn from our 

evaluations. 

We are not aware of any previous studies on keyword indexing that have used Kα 

for assessing indexing consistency.  Certainly the values in this study are substantially 

below the threshold that Krippendorff offers for reliability in content analysis studies.  

And while not directly comparable, the values for keyword indexing are strikingly 

lower than those we obtained for semantic component indexing.   

For comparison, we briefly describe two keyword indexing studies that used 

Traditional Formula 1 to analyze indexing consistency.   

• Funk and Reid [28] analyzed episodes of unintentional duplicate indexing for 

760 journal articles in the National Library of Medicine MEDLINE database 

that were indexed with MeSH.  Funk and Reid analyzed the indexing terms in 
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nine categories, including Checktags, which are a limited number of 

frequently-used descriptors that indexers are expected to consider for every 

MEDLINE article (such as HUMAN, MALE, PREGNANCY, INFANT), 

Main headings, which comprise the bulk of MeSH terms, Central concept 

Main headings, which are MeSH terms that appear with an asterisk before the 

term to indicate that the term reflects a central concept of the article, and Main 

Heading/subheading combinations, which are MeSH terms with an attached 

subheading.  Indexers had the highest consistency for Checktags, 0.75, and the 

lowest consistency for Main heading/subheading combinations, 0.34.  Funk 

and Reid compared their results to some older, smaller studies of MEDLINE 

articles that reported indexing consistency from 0.34 for Checktags, Main 

headings, and subheadings to 0.48 for Checktags and Main headings only.  

They also noted a consistency of 0.55 for Central concepts only in a study of a 

computer-assisted indexing method. 

• As part of a text categorization study, Uren [151] studied the consistency of 

four experienced indexers using a thesaurus related to welding technology to 

index bibliographic records (title and abstract only) for nine documents related 

to welding.  She reported the mean consistency for each of the six possible 

pairs of indexers and an overall mean.  The pairwise consistency means ranged 

from 0.37 to 0.44 with an overall mean of 0.41. 

The indexing consistency in both studies is higher than we observed in our study.  

There are at least two possible explanations for the lower consistency in our study.  
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First, both of these studies used a single keyword indexing vocabulary that had been 

designed specifically for indexing the type of documents in the study.  It seems 

reasonable to assume that appropriate keywords were available for each document and 

that the indexer had only to determine which keywords were most appropriate.  

Neither study mentions the issue of zero keywords being assigned and it is reasonable 

to assume that all documents had at least one keyword assigned by each indexer.  If 

the indexing vocabulary is less well-suited to the documents, as we believe to be the 

case for at least some of our documents, the indexer’s task is more difficult and more 

likely to result in inconsistency.  Second, the study by Funk and Reid and the study by 

Uren used professional indexers.  Although the indexers in our study were experienced 

in the domain and had experience indexing documents for sundhed.dk, indexing was 

not their primary job.  Indexing was an intermittent task they performed in the course 

of their other duties, usually without any formal training. 

 

7.1.2.3. Time required for indexing 

Using a paper interface for the indexing and a computer interface for the timing 

was unsatisfactory.  Indexers sometimes forgot to click on the interface and the times 

recorded are not always reliable indicators of the time actually spent indexing 

documents.  Most of the errors can be identified because the indexer clicked the start 

and stop buttons in rapid succession.  There may be additional errors if an indexer 

started the next document before remembering to click the appropriate buttons, or if 

the indexer took a break without clicking on the button to indicate completion.  We 
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eliminated all instances for which the elapsed time was less than 15 seconds, assuming 

that these instances represent errors.   All other data is included in the summary shown 

in Table 7.20.  While this data probably contains some errors, we believe that the 

mean times at least provide a rough estimate of how much time the indexers spent 

using each indexing method. 

If all indexers had completed indexing all their assigned documents, there would 

be 96 instances of each type of indexing (6 instances for each of 16 indexers).  

However, not all indexers completed all documents.  We have a total of 83 instances 

of semantic component indexing and 88 instances of keyword indexing, for an average 

of 5.2 and 5.5 documents completed per indexer.  The average indexing times shown 

in Table 7.20 are based on 78 semantic component indexing instances and 77 keyword 

indexing instances (after eliminating times less than 15 seconds).  Table 7.20 also 

shows the maximum and minimum indexing times.  Although 24 seconds is a fast 

indexing time and could also represent a timing error, the document indexed in 24 

seconds was very short, less than half a page.  The next fastest times for semantic 

component indexing were 56 and 86 seconds, suggesting that at least some documents 

can be indexed quite quickly.  Differences in indexing time are probably related to 

several factors, including document length and how difficult the document was to 

comprehend.  Some documents are written in nontechnical language and contain no 

concepts that are likely to be difficult to understand for an average reader.  Others 

contain domain-specific concepts and medical terminology that may be difficult for 

someone without specialized training.  The effect of document length is supported by 
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a correlation coefficient of 0.57 between document length (in characters) and indexing 

time. 

Figure 7.4 shows the distribution of indexing times for both types of indexing.  

The data in Figure 7.4 and the mean times in Table 7.20 suggest that keyword 

indexing was slightly faster than semantic component indexing.  The difference is 

relatively small, however.  Figure 7.5 shows the mean indexing time by document 

class for each type of indexing, demonstrating that the similarity applies to all three 

classes of documents.  Most of the increased time for semantic component indexing is 

attributable to the Clinical Problem document class.  These documents were generally 

longer than documents of the other two classes.  One possible explanation for the 

larger difference in indexing time for Clinical Problem documents is that the longer 

documents may have had more segments per semantic component.  If so, this would 

require more handwritten labels whereas the number of keywords would not 

necessarily increase for longer documents. 

 
Table 7.20 Time required for indexing documents 

Indexing 
Type 

Total 
Documents 

Indexed (max 
= 96) 

Mean Num. 
Docs Indexed 
Per Indexer 

(max = 6) 

Mean Time 
(min:sec) 

Min Time 
(min:sec) 

Max Time 
(min:sec) 

Semantic 
Components 83 5.2 07:03 00:24 27:05 

Keywords 88 5.5 05:56 01:06 31:26 
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Figure 7.4 Distribution of indexing times 
 
 
7.1.2.4. Indexers perceptions of the indexing tasks  

In this section we summarize the findings from the final survey by grouping 

questions relating to: 

• an indexer’s perception of the difficulty of indexing 

• an indexer’s confidence in the indexing just performed 

• an indexer’s preference regarding the two types of indexing. 

Figure 7.6 displays the data from six survey questions related to indexing 

difficulty.  The bars show the number of responses in each category for each question.  

Each question allowed five possible responses, with the extremes labeled as “Very 

Difficult (left-most bars, in red) and “Very Easy” (right-most bars, in green).  The 
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Figure 7.5 Mean indexing times by document class 
 
 
intermediate bars (pink, yellow, and light green) represent the choices between the 

extremes.  One indexer circled more than one score for some questions and wrote the 

comment “depend on the document and the information.”  We distributed the 

responses for that indexer evenly (half of one point each) between the two scores that 

were circled on the survey. 

Two questions addressed aspects of keyword indexing: (1) how easy (or difficult) 

it was to choose which concepts to index, and (2) how easy (or difficult) it was to 

choose keywords to represent the concepts.  Responses ranged from Very Difficult to 

Very Easy, with slightly more indexers finding the tasks easy (the two green bars) 

rather than difficult (the pink and red bars). 
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Figure 7.6 Indexing difficulty 
 
 

 

Three questions addressed aspects of semantic component indexing:  (1) how easy 

(or difficult) it was to understand what each semantic component was (what kind of 

information it should contain), (2) how easy (or difficult) it was to designate semantic 

components for the documents, and (3) how easy (or difficult) it was to decide where 

the boundaries of the semantic component text should be.  Answers again ranged from 

Very Difficult to Very Easy, except for the question about boundaries for which all 

responses were in the middle three categories.  As many or more indexers found these 

tasks to be easy as indexers who found the tasks to be difficult.  Compared to keyword 

indexing, about the same number of indexers found the semantic component tasks at 
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least somewhat easy, except for designating semantic components.  The scores for 

designating the semantic components were evenly distributed between easy and 

difficult.  Slightly fewer rated the task easy (the two bars furthest to the right) 

compared to those who rated keyword indexing to be easy. 

The final question addressed the difficulty of choosing the document class.  None 

of the indexers found this to be Very Difficult and most found the task to be easy. 

Figure 7.7 displays data from five questions related to the indexers’ confidence 

regarding the indexing they had just completed.  Again, the bars indicate the number 

of indexers who chose each response.  The five possible responses ranged from “Not 

At All Confident” (left-most bars, in red) to “Very Confident” (right-most bars, in 

green) with intermediate bars (pink, yellow, and light green) representing the choices 

between the extremes. 

The first two questions addressed the indexer’s confidence regarding (1) the 

keywords chosen from the three controlled vocabularies, and (2) the free keywords 

assigned.  The next two questions addressed the indexer’s confidence regarding (1) the 

semantic component labels, and (2) the boundaries chosen for semantic component 

instances.  The final question addressed the indexer’s confidence regarding the 

document class.  For all questions (both types of indexing), the responses tended 

toward the middle range (neutral), and more indexers were confident (the two 

response categories represented by the bars to the right of middle) than not confident 

(the two response categories represented by the bars to the left of middle). More 

indexers were confident about document classification than any of the other tasks.  For  
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Figure 7.7 Indexer confidence 
 

keyword indexing, more indexers were confident about their free keyword choices 

than were confident about their choices from the controlled vocabularies.  For 

semantic component indexing, more indexers were confident about the semantic  

component labels than were confident about the boundaries.  Although somewhat 

more indexers were confident about their keyword indexing than were confident about 

their semantic component indexing, more indexers expressed a lack of confidence in 

their keyword indexing than expressed a lack of confidence in their semantic 

component indexing. 

The final group of questions is about indexer preferences.  Figure 7.8 shows that 

most indexers had an equal preference for the two types of indexing.  However, 
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slightly more indexers preferred keyword indexing as a task to perform whereas 

slightly more indexers thought semantic component indexing would be better for 

searching. 

Figure 7.8 Indexer preferences regarding indexing system for performing indexing and searching tasks 
 
 

Overall, it appears that the semantic component indexing tasks were comparable to 

keyword indexing.  Document classification was somewhat easier than keyword 

indexing and indexing the semantic components was perhaps slightly more difficult.  

Although we did not show that semantic component indexing was clearly easier than 

keyword indexing, the results are encouraging given that semantic component 

indexing was entirely new to these indexers, whereas keyword indexing was a familiar 

task.  Similarly, it is not surprising that the indexers had somewhat more confidence in 
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their ability to perform a familiar task, keyword indexing, and a slight preference for 

performing that task.  Despite having less confidence in their ability to perform 

semantic component indexing well, the indexers were fairly positive about the 

potential usefulness of semantic component indexing for searching.  Only two 

indexers would prefer to have keyword indexing when they search, whereas four 

indexers thought semantic components would be better for searching. 

 

7.1.3. Discussion of Indexing Study Results 

Although the indexers in our study perceived keyword indexing to be only 

moderately difficult, their agreement with the indexing standard and with each other 

was quite low.  Semantic component indexing was a new, unfamiliar task and yet they 

perceived it as similar in difficulty.  The accuracy and consistency of the two types of 

indexing are not directly comparable because the indexing tasks are somewhat 

different and are assessed using different metrics and different units of measurement.  

Nevertheless, we note that the data suggests more agreement of the indexers, both with 

the reference standard and with each other, for semantic component indexing than for 

keyword indexing.   

Lancaster suggests that indexing is more likely to be consistent when terms are 

displayed “to remind an indexer that they must be used whenever applicable” [22] and 

notes that the Funk and Reid study supports this idea.  It is possible that semantic 

component indexing can promote consistency by using a small schema so that 

indexers have relatively few semantic components to choose from within a given 
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document class.  The indexing application can further support indexing quality by 

providing explicit reminders of what semantic components are available in the menu 

that appears each time a user highlights text and performs a right click.  

Although our data is not sufficiently accurate to draw firm conclusions about the 

time required for indexing, it appears that semantic component indexing took slightly 

longer than keyword indexing and that the time was in the same general range.  We 

speculate that reading (or at least skimming) and comprehending the document may 

take a similar amount of time for both types of indexing and might be a relatively 

large component of the total indexing time regardless of indexing method.  A recent 

evaluation of a machine-aided indexing system [152] suggests that much of the time 

and effort of indexing is attributable to reading and understanding the document.  If 

so, then reading time may set a lower bound on time required for manual indexing.  

Whether one type of indexing requires more in-depth reading or understanding of the 

document than the other type of indexing is unknown. 

 

7.2. Indexing To Support A Searching Study 

For the searching study described in Chapter 8 we used random sampling and 

purposeful browsing to further analyze the sundhed.dk document collection.  We 

created a semantic component schema consisting of six document classes and 

associated semantic components.  Seven experienced indexers collectively indexed 

371 documents using this schema.  In Chapter 8 we discuss how we selected the 

documents that were indexed.  The indexers consisted of one member of the research 
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team (Dr. Nielsen) and six indexers from sundhed.dk.  Most of the indexers had 

participated in the indexing study just described and all them had received training 

about semantic components and training about how to use our semantic component 

indexing software.   

Instead of indexing the documents on paper, the indexers used the indexing 

prototype that is described in Section 7.2.  The indexing application automatically 

logged timestamps, recording when each document was first displayed and when the 

indexer submitted the indexing for that document.  The mean indexing time was 3 

minutes 28 seconds, with a minimum time of 6 seconds and a maximum time of 60 

minutes and 3 seconds.  The maximum time may be an artifact because it is possible 

that the indexer left the application in an unfinished state during lunch.  The next 

longest time was 45 minutes and the next shortest time was 9 seconds.  Figure 7.9 

shows the distribution of the indexing times required for these 371 documents.  Most 

of the documents required less than 5 minutes to index. 
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Figure 7.9 Distribution of indexing times: indexing to support the searching study 
 
 

These times are noticeably shorter than the times recorded during the indexing 

study.  Six factors might have contributed to the shorter indexing times: 

1. The indexing application has a menu-driven interface and eliminates the need to 

manually record the semantic component labels. 

2. The indexers indexed more documents for the searching study than for the 

indexing study.  Their indexing speed might have increased as they gained 

familiarity with both the process of semantic component indexing and with the 

semantic component schema. 

3. The indexers who volunteered to participate were probably those who were most 

comfortable with semantic component indexing during the indexing study. 
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4. The mean document length might have been shorter. 

5. The schema used in the searching study was a refinement of the schema used in 

the indexing study and might have been a better reflection of the documents 

6. We might have described the semantic components better, leading to a clearer 

understanding about what kind of information belonged in each component. 

 

7.3. Discussion 

The accuracy and consistency data provide an overall assessment of the quality of 

indexing and also allow the researcher to determine whether particular documents, 

document classes, semantic components, or keyword vocabularies are more 

problematic than others.  In our indexing study, it appears that the semantic 

components for the Services documents should be reconsidered.  Both the accuracy 

and the consistency are lower for these semantic components than for the semantic 

components in other document classes.  This discrepancy might indicate that the set of 

semantic components we used do not provide a good description of the contents of this 

class of documents or that the descriptions are not adequate for consistent use by the 

indexers.   

The data from the keyword indexing portion of the study suggests that indexers 

had more trouble with both the Procedure documents and the Services documents than 

with the Clinical Problem documents.  We conjecture that the indexing vocabularies 

are not adequate for describing documents in those two document classes.  The 

difference in keyword indexing quality between the Procedure documents and the 
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Clinical Problem documents was larger than the difference in semantic component 

indexing quality between the same two document classes.  Although the quality 

measurements for the two types of indexing are not directly comparable, these 

differences suggest that semantic components might be especially useful when an 

appropriate indexing vocabulary does not exist.  The variations in accuracy and 

consistency across the semantic components highlight the importance of carefully 

developing the right semantic component schema and providing good descriptions of 

the kinds of information each semantic component should contain.  It is likely that 

additional training and practice could increase the accuracy and consistency of 

semantic component indexing.  (Additional training might increase the accuracy and 

consistency of keyword indexing as well.) 

As stated earlier, semantic component indexing and keyword indexing are not 

directly comparable because, although we used recall and precision to measure 

accuracy for both kinds of indexing and we used Kα to measure consistency for both 

kinds of indexing, the units of measurement are different.  Evaluating instances of 

semantic component indexing compares the binary classification of text units 

(characters) within documents whereas evaluating keyword indexing compares 

variably sized sets of keywords that are extrinsic to the documents.  The substantial 

differences in the range of numbers produced for the two types of indexing suggests 

that accuracy and consistency might be higher for semantic component indexing.  

However, assessing the effects on searching of keyword indexing and semantic 



www.manaraa.com

 

270

component indexing will provide an important comparison between the two types of 

indexing. 

Despite their unfamiliarity with semantic component indexing, the indexers’ 

perception of task difficulty was quite similar between the two types of indexing.  

Only slightly more indexers were more confident in their keyword indexing than in 

their semantic component indexing.  The indexers rated semantic component indexing 

difficulty almost exactly the same as choosing which concepts should be indexed with 

keywords.  This similarity suggests that both types of indexing may share the same 

underlying intellectual tasks that determine the overall difficulty of indexing, such as 

comprehending the text and recognizing the important concepts in the document. 

Although semantic component indexing took the indexers in the study slightly 

longer than did keyword indexing, the average time to perform semantic component 

indexing for the documents used in the searching study was faster than the average 

time for either type of indexing during the indexing study.  In Section 7.2 we 

discussed several possible explanations for the faster indexing.  Overall, the scalability 

of manual semantic component indexing appears to be in the same general range as for 

manual keyword indexing when we consider indexing quality, perceived difficulty, 

and the time required for indexing.  If appropriate keyword indexing vocabularies are 

not already available, semantic component indexing may be preferable because the 

semantic component schema can be customized to a particular document collection 

and should take less time to develop than a comprehensive keyword vocabulary. 



www.manaraa.com

 

271

The research just described has limitations.  We studied only sixteen indexers and 

twelve documents in a single domain.  Additional studies in different document 

collections and domains are needed to confirm the feasibility of semantic component 

indexing.  Even if manual semantic component indexing is as scalable as manual 

keyword indexing, any type of manual indexing is infeasible for many document 

collections and settings due to limited resources.  On the other hand, automating 

semantic component indexing could extend its usefulness considerably if the indexing 

quality is sufficiently high.  The research reported in Chapter 6 and in this chapter 

provides a foundation for pursuing automated semantic component indexing.  We 

have created a framework for evaluating semantic component indexing and have 

shown that manual semantic component indexing is sufficiently scalable for creating 

data sets for training and evaluating automated indexing applications.  However, 

semantic component indexing is only worth pursuing if it can enhance searching.  In 

Chapter 8 we describe an interactive searching study that explores whether semantic 

component indexing can enhance search results. 

 

7.4. Summary 

We assessed the feasibility of semantic component indexing by comparing 

semantic component indexing to keyword indexing in a user study.  Sixteen indexers 

indexed twelve documents, half with semantic component indexing and half with 

keyword indexing.   We reported data for accuracy, consistency, time required for 

manual indexing, and perceived difficulty of indexing.  Both types of indexing had 
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quality that varied, especially by document type.  We cannot directly compare the 

values, but the data suggests that agreement for semantic component indexing might 

be better than for keyword indexing.  In particular, the quality of semantic component 

indexing appears to be less sensitive to document type than keyword indexing, which 

is affected by the suitability of the keyword indexing vocabularies for the documents 

being indexed.  Our results also suggest that semantic component indexing is similar 

to keyword indexing with respect to indexing time and perceived difficulty.   

We also reported the time required to perform semantic component indexing for 

371 documents that were used in the searching study.  The data from these 371 

documents indicate that it may be possible to perform semantic component indexing 

substantially faster than the times we recorded in the indexing study.  
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Chapter 8    Searching with Semantic Components 

 

In previous chapters we discussed developing a semantic component schema, 

using semantic components to express information needs, and identifying semantic 

components in documents.  The real test of whether semantic components are useful, 

however, is whether semantic components can help retrieve documents.  In this 

chapter we describe the first experiment to investigate the effect of semantic 

components on searching.  We report on the retrieval performance of an 

implementation of the semantic components model on top of an existing information 

retrieval system.  Our general goal was to answer the question: Are semantic 

components useful for retrieving documents?   

More specifically, we asked: 

1. Can physicians using a search system with semantic components formulate 

queries that result in better search performance than when using a basic system 

without semantic components? 

2. Can physicians using a search system with semantic components successfully 

complete more search scenarios than when using a basic search system without 

semantic components? 

3. Can physicians using a search system with semantic components successfully 

complete search scenarios more quickly than when using a basic search system 

without semantic components? 
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4. Are physicians more satisfied with the searching experience and with search 

results when using a search system with semantic components that when using 

a basic system without semantic components? 

In the next section we describe the methods we used to investigate these questions. 

 

8.1. Experimental Methods 

First we describe the experimental search system, including the documents, the 

search engine, the interfaces, the indexing, and the results display.  We then describe 

the design of the study, including the subjects, the organization of the study sessions, 

the scenarios, the relevance judgments, and the evaluation metrics. 

 

8.1.1. Experimental Search System 

We created an experimental search system based on the existing sundhed.dk portal 

that consisted of documents, a search engine, and two different search interfaces.  

Figure 8.1 shows a schematic of the experimental search system. 

 

8.1.1.1. Documents 

With the permission of sundhed.dk, we copied all 24,712 documents owned by 

sundhed.dk as of July 2006 (including keyword and metadata fields).  These 

documents, formatted as web pages, contain information about health and healthcare 

and also about the Danish healthcare system.  Some information is written for 
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healthcare providers and some for patients and their families, but all the documents are 

available to anyone on the public web portal. 

 

Figure 8.1 Schematic of the experimental search system 
 
 
 
8.1.1.2. Search Engine 

The operational sundhed.dk web portal uses Ultraseek [147], a commercial search 

engine developed by Verity Inc., and subsequently acquired by Autonomy 

Corporation [153].  We were granted a temporary license for the Ultraseek 5.6 

software by Ensight (now Metier), the Danish distributor for Verity/Autonomy 

products.  Sundhed.dk gave us copies of its configuration files so that we could mimic 

the operational system. 

Experimental Search System 

System 1 

24,712 sundhed.dk 
documents 

Ultraseek 

sundhed.dk  
portal interface 

24,712 test system 
documents 

System 2 

Semantic 
component 
metadata 

added 

Ultraseek 

copy 

search features 
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Ultraseek provides three main functionalities in the sundhed.dk portal: (1) it 

indexes all the documents, (2) it generates a search interface, implemented as a web 

page, and (3) it performs requested searches and generates a web page with a ranked 

list of links to documents that comprise the search result.  Both the indexing and the 

search interface are customizable by setting parameters through an administrative 

interface and by editing the code that generates the user interface.  Ultraseek performs 

full text indexing of the body of the document and also indexes metadata fields that 

are specified in the configuration file.  The internal algorithms for searching the 

indexes and for ranking results are proprietary and cannot be viewed or modified.  

Documentation on the Ultraseek website describes the scoring algorithm in general 

terms as taking into account term frequency, term location within the document, rarity 

of individual terms, occurrence of multiple query terms, and document quality “based 

on numerous factors” [154]. 

 

8.1.1.3. Search Interfaces 

The operational sundhed.dk site offers two search interfaces, a simple search (a 

single search box only) and an advanced search that provides several filters and the 

ability to designate terms as desired or required.  We created two interfaces to our 

search system that we labeled as System 1 and System 2.  The System 1 interface 

consists of a simple search box plus two filters from the sundhed.dk advanced 

interface that are controlled by pulldown menus, one to filter documents by the region 

of Denmark to which the documents are applicable (labeled Regionalt indhold in the 
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interface) and one to filter documents by an existing document classification (labeled 

Informationstype in the interface) used by sundhed.dk.  We included these two filters 

after discussions with physician users and indexers, plus a review of the sundhed.dk 

search log, indicated these filters to be useful and frequently used.  The default 

behavior for both filters is to include all documents (apply no filter).  Queries typed 

into the search box use the Ultraseek query syntax, which includes wildcard expansion 

when an asterisk is included in a search term.  Figure 8.2 shows a screenshot of the 

System 1 interface. 

Figure 8.2 Screenshot of System 1 search interface 
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System 2 has the same features as System 1 plus the ability to further specify the 

search using semantic components.  To search using System 2, the searcher types one 

or more search terms into the search box labeled Search and optionally chooses an 

item from the pulldown menus for the two filters, as when using System 1.  In 

addition, the searcher can (optionally) enter one or more search terms into one or more 

of the text boxes for the semantic components.  Figure 8.3 shows a screenshot of the 

System 2 interface.  The text boxes are grouped by document class (the name of the 

class is in bold font) and are labeled with the semantic component.  The green circle 

highlights a search term (the Danish equivalent of pregnan*) in a text box associated 

with the semantic component for treatment.  System 1 was produced by standard 

Ultraseek code, configured to mimic the operational system.  System 2 was based on 

the Ultraseek code for System 1 but required extensive customization of the Python 

code that produces the web interface. 

 

8.1.1.4. Document Indexing 

We indexed the documents using a semantic component schema that is the third 

refinement of a schema for the sundhed.dk document collection.  As discussed in 

Chapters 4 and 7, we iteratively improved the schema as we gained more experience 

and knowledge about the documents and the users of the documents.  This version of 

the schema consists of six document classes and associated semantic components.  

Table 8.1 shows the schema, with English translations of the Danish labels. 
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Figure 8.3 Screenshot of System 2 search interface 
 
 

Because it was not feasible to manually index the semantic components in 24,712 

documents, we chose a subset of documents for indexing by executing a variety of 

searches applicable to each of the four scenarios for the searching study.  Our goal was 

to identify documents most likely to be retrieved at a high rank by the users, plus all 

documents relevant to the search scenarios.  We selected the documents to be indexed 

using the following method.  First, we composed five to seven queries per scenario 

that we thought searchers were likely to use.  We entered each query into the 

operational sundhed.dk interface and programmatically extracted the ranked results.  

For each scenario, we merged the results lists from all the queries for that scenario so 
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that we had one ranked list per scenario.  The merging algorithm took into account 

how many of the queries returned a particular document and the average rank at which 

the document was returned.  We then used a round-robin algorithm to create a single 

priority list of the documents to be indexed with semantic components.  The round-

robin algorithm ensured that our indexing resources were allocated approximately 

equally among the four scenarios. 

Table 8.1 Semantic component schema for the searching study 
Document Class Semantic 

Components 
 Document 

Class 
Semantic Components 

Klinisk problem 
(Clinical problem) 
 

Generel information 
(general information) 
Diagnosticering 
(diagnosis, evaluation) 
Henvisning 
(referral) 
Behandling 
(treatment) 

Klinisk enhed 
(Clinical unit) 

Funktion og speciale 
(function and specialty) 
Praktisk information 
(practical information) 
Henvisning 
(referral) 
Personale og organisation 
(staff and organization) 

Klinisk Metode 
(Clinical method) 

Generel information 
(general information) 
Praktisk information 
(practical information) 
Henvisning 
(referral) 
Efterbehandling 
(aftercare) 
Risici 
(risks) 
Forventet resultat 
(expected results) 

Lægemidler 
(Drugs) 
 

Generel information 
(general information) 
Praktisk information 
(practical information) 
Målgruppe 
(target group) 
Effekt 
(effect) 
Bivirkning, Interacktioner og 
kontraindikationer 
(side effects, interactions and 
contraindications) 

 Services 
(services) 
 

Generel information 
(general information) 
Praktisk information 
(practical information) 
Henvisning 
(referral) 

 

Opslag 
(Notice) 

Generel information 
(general information) 
Praktisk information 
(practical information) 
Kvalifikation 
(qualification) 

 
 

Seven experienced indexers, who had received training about semantic 

components and training about the use of our semantic component indexing software, 
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indexed 371 documents.  The indexing software is described in Section 3.1.  We 

stored the semantic component data in metadata fields that we added to each indexed 

document.  Data included the indexer-assigned document class, a list of the semantic 

components present in the document, the size of each semantic component instance 

(the number of characters in the instance), and the text in each semantic component 

instance.  After configuring Ultraseek to index our newly-defined metadata fields, we 

indexed the full text and metadata fields (including both the metadata fields in the 

original document and also the semantic component metadata fields, when present) in 

all 24,712 documents with Ultraseek. 

After completing the searching experiment, we retrospectively analyzed the 

distribution of documents indexed with semantic components.  We did not want to 

bias the results by indexing only the relevant documents that contained words related 

to the scenarios, so we deliberately indexed documents likely to be returned by 

searches for the four scenarios.  In other words, in addition to relevant documents we 

indexed the nonrelevant documents most likely to compete with relevant documents 

for ranking.  To assess our results, we calculated the percentage of retrieved 

documents that had been indexed and the percentage of highly relevant documents that 

had been indexed.  If a difference between systems were due only to System 2 

preferentially returning indexed documents, the percentage of highly relevant 

documents in the result would be directly related to the percentage of indexed 

documents in the result.  We describe the analysis in more detail in Section 8.2.5. 
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8.1.1.5. Retrieval and Results Display 

We configured both System 1 and System 2 to return 100 hits, ordered by 

similarity score.  System 1 returned documents using the Ultraseek similarity 

algorithm based on full text indexing of the title, body, keywords, and designated 

metadata fields.  If a value was selected for either of the two filters, Informationstype 

or Regionalt indhold, documents matching the topical query term(s) were returned 

only if the document also contained the appropriate value in the metadata field for the 

selected filter(s).  System 1 did not search metadata fields representing semantic 

components. 

System 2 sent the query in the main (simple) search box plus the values for the two 

filters, if any, to the Ultraseek search engine exactly as in System 1.  Unlike System 1, 

System 2 intercepted the result list and similarity scores, and sent a second query with 

the terms that were entered into the semantic component fields as a fielded search of 

the indicated semantic component metadata fields.  The similarity scores for the 

second search were determined solely by the similarity of the semantic component 

part of the query to the corresponding semantic component instances in the retrieved 

documents.  Documents without an instance of the requested semantic component 

were not returned from the second search and were assigned a similarity score of zero 

(for the second search).  An asterisk in a query term acted as a wildcard and matched 

any text in any word.  If only an asterisk and no other characters were entered in a 

search box for a semantic component, the asterisk acted as both a wildcard and a filter.  

In other words, the asterisk matched any text, but only documents that contained an 
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instance of the requested semantic component were returned from the second search.  

Documents were returned to the user only if they appeared in the result of the first 

“topical” query.  Document ranking was determined by a final similarity score that 

was computed as the average of the similarity scores from the two searches (the search 

based on terms in the main search box and the search based on semantic components). 

In summary, System 1 returned documents (that matched the filters, if any) 

ordered by their similarity to a simple query as calculated by Ultraseek based on full 

text indexing and keyword indexing.  System 2 returned documents (that matched the 

filters, if any) ordered by the average of the similarity to a topical query and the 

similarity of any queries applied to particular semantic components.  System 2 

returned exactly the same documents that would have been returned by System 1 (re-

ranked) unless a query to System 2 included an asterisk-only semantic component 

query, in which case it returned only documents from the topical query that also 

contained an instance of the semantic component. 

The results displays for both System 1 and System 2 mimicked the operational 

system.  Both systems displayed the title, a snippet of text showing the query term in 

context, the document ID, the region (if any) for which the document was written, the 

document type (Informationskategori) used by the operational system, and a summary 

written by the document author.  In addition, System 2 also displayed: (1) the 

document class selected by the indexer from our list of six document classes 

(Documenttyper) and (2) a list of semantic components appearing in the document 

plus an integer to indicate the size, in number of characters, of the semantic 
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component instance.  Figures 8.4 and 8.5 illustrate the results display from System 1 

and System 2, respectively. 

 
 

Figure 8.4 Cropped screen shot of System 1 results display 
 
 

Figure 8.5 Cropped screen shot of System 2 results display 
 
 
 
8.1.2. Experimental Design 

 

8.1.2.1. Subjects 

A convenience sample (as distinguished from a random sample) of 30 Danish 

family practice physicians from the Århus Region who were familiar with sundhed.dk 

participated in the searching study.  The physicians were paid an amount equivalent to 

what they would have earned in their practice during the two hours of the study plus 

travel expenses.  The study received prior approval from the Portland State University 
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Human Subjects Research Review Committee.  Table 8.2 summarizes the self-

reported medical and searching experience of the 30 participants. 

 
 
 
Table 8.2 Searcher characteristics 

Searcher Characteristic Value ± Std. Dev. 

Experience using Internet search engines 7.2 ± 2.8 years 

Experience using sundhed.dk to find information about health care or the 
healthcare system (not patient data) 2.4 ± 1.4 years 

Self described level of searching experience on a scale from 1 (not at all 
experienced) to 5 (very experienced) 2.4 ± 0.9 

Experience as a medical professional 21.4 ± 7.6 years 

 
 
 
8.1.2.2. Study Organization 

We studied each subject separately in a two hour block that consisted of a training 

session followed by an experimental session.  We performed the studies during five 

consecutive days to maintain consistency.  Each study session followed the same 

sequence.  The training session consisted of an introduction to semantic components 

and to the interfaces for Systems 1 and 2 plus a series of guided searches using the two 

systems.  Each training session lasted about 45 minutes.  The experimental session 

consisted of four search sessions, one for each scenario.  We define a search session as 

the set of queries issued by a single searcher for a single scenario.  Each subject used 

System 1 for two scenarios and System 2 for two scenarios.  We randomized the order 

of scenarios and system use.   Fifteen physicians used System 1 for their first two 

scenarios and System 2 for their second two scenarios.  The other fifteen physicians 
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used the two systems in reverse order.  We also varied the order of the scenarios in a 

random fashion.  We randomly selected 15 of the 24 possible sequences of four 

scenarios; these were randomly assigned to two physicians, one who started with 

System 1 and one who started with System 2.  Figure 8.6 depicts the organization of 

the study sessions and Table 8.3 summarizes the randomization of participants to 

sequences of systems and scenarios. 

Training Session 
Introduction to the study 

Preliminary demographic survey 
Training and guided practice with System 1 and System 2 interfaces 

 
Experimental session 

15 physicians  15 physicians 
System Scenarios  System Scenarios 

System 1 First scenario 
Second scenario 

 System 2 First scenario 
Second scenario 

System 2 Third scenario 
Fourth scenario 

 System 1 Third scenario 
Fourth scenario 

Figure 8.6 Study organization 
 

The searcher used one of the two interfaces to enter queries and view the results.  

The searcher could click on any of the hits in the result list to view the full document.  

For any documents the searcher considered relevant, we asked him or her to record an 

explicit relevance judgment.  At the end of each scenario the searcher filled out a brief 

questionnaire.  Each participant also completed a final questionnaire and participated 

in a short interview after having completed all four scenarios. 

 

8.1.2.3. Scenarios 

Each scenario represented a typical information need that might be encountered in 

the context of a patient visit in order to make a decision about patient care.  We 



www.manaraa.com

 

287

developed the scenarios following the methodology of Borlund, who recommends 

evaluating systems using potential system users as test subjects and using simulated 

work tasks to motivate the searches [47].  The questions posed in the scenarios address 

specific aspects of medical care in the context of individual patient circumstances and 

are in line with prior work on clinical questions [9], adapted to the specifics of the 

Danish healthcare system and the information available in sundhed.dk.  The scenarios 

each represent needs for information available in the sundhed.dk document collection 

but are of variable difficulty.  We asked the searchers to search as they would in real 

life, letting the constraints of the clinical setting determine how long they would 

search and when they would either be satisfied or abandon the search.  Table 8.4 

provides a condensed summary of each scenario. 

 

Table 8.3 Randomization of exposure of searchers to systems and scenarios 
Day Searcher ID System 1 System 2 Day Searcher ID System 1 System 2 

1 B A C D 2 B A C D 
3 A B D C 4 A B D C 1 
5 C A D B 

1 
6 C A D B 

7 D B C A 8 D B C A 
9 A D C B 10 A D C B 2 

11 C D B A 
2 

12 C D B A 
13 D C B A 14 D C B A 
15 B C A D 16 B C A D 3 
17 D C A B 

3 
18 D C A B 

19 B C A D 20 B C A D 
21 A B C D 22 A B C D 4 
23 B C D A 

4 
24 B C D A 

25 D B A C 26 D B A C 
27 A C B D 28 A C B D 5 
29 C D A B 

 

5 
30 C D A B 
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Table 8.4 Scenarios 
Ex-smoker; cough, fatigue, shortness of breath Scenario 

A How should he be evaluated for emphysema? 

Woman, 23 weeks pregnant, with vaginal bleeding Scenario 
B Should she be referred for immediate examination? 

Childless woman who has had two miscarriages and wants to become pregnant Scenario 
C Should she take folate and at what dose? 

Man who has been attacked with a knife, now nervous and afraid to leave his apartment 
alone Scenario 

D Can he be referred for free psychological help (covered by the public insurance)? 

 
 

8.1.2.4. Relevance Judgments 

We used two sets of relevance judgments for this study, individual user judgments 

and a reference standard.  We asked searchers to record a graded relevance judgment 

of 0 to 3 for documents that they viewed, or in a few cases, for relevant documents 

they were already familiar with and did not need to open to know the contents.  We 

used the four point scale of Sormunen that classifies documents as irrelevant, 

marginally relevant, fairly relevant, and highly relevant [45].  Our reference standard 

consisted of graded relevance judgments made independently by a domain expert 

using the same scale.  The standard included documents that were identified as 

relevant during scenario creation plus all documents identified as relevant (rating 1–3) 

by at least one searcher.  Thus the reference standard incorporated searcher input but 

was developed independently of individual searchers’ judgments.  Whereas individual 

searchers typically identified a single highly relevant document for each session, the 

reference standard had multiple relevant documents per scenario, as shown in Table 
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8.5.  Using the reference standard allowed us to assess the quality of complete ranked 

lists returned by each system. 

 
Table 8.5 Number of highly relevant documents per scenario 

Scenario A Scenario B Scenario C Scenario D 
3 1 9 3 

 
 

8.1.2.5. Evaluation Metrics 

We evaluated search system performance from multiple perspectives that can be 

grouped as two pairs of perspectives: 

• The system perspective and the user perspective 

• The single query perspective and the session-based perspective. 

Table 8.6, at the end of this section, summarizes the evaluation strategy for the system 

perspective and the user perspective and shows how we considered both the single 

query and session-based perspectives for both the system and user perspectives. 

Because we were simulating a search setting where information needs are very 

specific, we assigned gain values of 0, 1, 10, and 100 to documents with relevance 

ratings of 0, 1, 2, and 3, respectively, for all metrics based on discounted cumulative 

gain (for calculating G[j]).  We used a factor of 10 to separate the values because 

marginally relevant and partially relevant documents are generally not very useful in 

the setting we simulated.  Also, because the scenarios simulate a setting where time 

available for searching is limited, we used a discounting parameter of base 2 for DCG 

to simulate a “busy” user [43].  A larger parameter, such as base 10, results in a 

smaller discounting of relevant documents that appear later in a search and simulates a 
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more patient user.  All results for metrics based on DCG use the newly modified 

version of DCG [44], shown in Equation (2) below. 

Because this searching study was interactive, searchers often issued multiple 

queries for a single scenario.  Little has been written about system evaluation in the 

presence of multiple queries.  From a system point of view, the goal is to produce the 

best results for a given query.  From the searcher point of view, the goal is to: (1) find 

the desired information, and (2) find it as quickly and efficiently as possible.  The 

second goal can be satisfied by having the desired information appear early in a result 

set, by finding the desired information with as few queries as possible, or with some 

combination of these two outcomes.   

We used two approaches to compare System 1 and System 2, each applied to both 

the system perspective and the user perspective.  First, we defined a best query for 

each search session (where a session is all the queries posed by one searcher for one 

scenario).  The best query in a search session is the query that had the best 

performance, as determined by a metric appropriate to the perspective being 

considered.  We describe the metrics we used below.  The best query approach 

allowed us to compare the results returned by the two systems given the user’s best 

effort at using the query language provided by each system.  Second, we looked at the 

gain provided by search results in the context of a sequence of queries in each session, 

using the new session-based discounting approach described below. 
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Session-based Discounting 

Existing IR metrics evaluate the results of a single query per information need.  

Yet interactive searching often results in multiple queries for a single information need 

when a user reformulates his query in response to unsatisfactory search results.  The 

session-based discounting methods presented below were developed in response to the 

need for a session-oriented methodology for comparing the performance of IR systems 

in our interactive searching study.  The metric, motivations, proposed uses, examples 

of use, and the challenges of evaluating new metrics are discussed in detail elsewhere 

[44].  Session-based discounting is a method for evaluating search results in multiple-

query sessions.  Session-based discounting assigns value to each returned document 

not only according to its rank in a result list, as is done by the established discounted 

cumulative gain (DCG) metric [43], but also progressively discounts the results of 

each query after the first query in a sequence of queries.  In an interactive search, 

results are penalized if the user must issue additional queries to find the desired result. 

A session is a sequence of one or more queries that each yields a ranked list of 

documents.  The session-based DCG (sDCG) metric produces a value associated with 

each ranked result for each query by discounting the DCG of each result according to 

the query iteration that produced the result. 

sDCG[i] = (1 + logs q)-1 * DCG[i]     (1) 
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where i is the ith ranked result in query iteration q , bq25 is the log base chosen for 

session-based discounting, and DCG(i) is calculated using a new version of the 

original DCG metric. 

The original and modified versions of DCG are shown in Section 2.1.4.  The 

original DCG only discounted documents that appeared at ranks greater than the 

logarithm base used to discount documents.  The new version discounts all documents 

after the first document, regardless of the logarithm base used for discounting.26  The 

modified DCG, used in calculating sDCG is: 

where j represents each document up to (preceding) and including document i in a 

ranked list and b is parameter chosen to govern the steepness with which document 

values are discounted as they appear further down a ranked list.  G[j] is the gain value 

assigned to the relevance score given to document j.  Applying sDCG to each result in 

a ranked list for a query produces a vector of values for the query results.  Like CG 

and DCG, sDCG can be normalized by dividing each value in the vector by the 

corresponding value in a vector that represents ideal search results (where the highly 

relevant documents appear first in a ranked list, followed by each less relevant 

document in the order determined by its relevance score).  Normalization facilitates 

                                                 
 
 
25 We follow the notation used in the published version of the metric, which uses bq to represent the log 
base.  The log base, bq , is a single parameter, not the product of two variables. 
26 The modification was suggested by the author. 
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comparing results from search sessions for scenarios with different numbers of 

relevant documents. 

Session-based discounting can be used in several ways. For example: 

• The effectiveness of IR systems can be compared with respect to the 

cumulated gain (discounted for query iteration) of the best, or last, query 

issued in each session.  The last query is of interest because it is usually the 

one that satisfied the user. 

• The effectiveness of IR systems can be compared with respect to how early 

they return a particular relevant document, or the first relevant document in an 

interactive session. 

• The effectiveness of IR systems can be compared with respect to the gain 

provided by concatenating the top n discounted results for the q queries in a 

session.  This method assumes that a user views, on average, n results before 

reformulating the query. 

We illustrate the use of sDCG in results presented below (Section 8.2.3).  We used a 

base of 2 for the bq parameter in session-based discounting.   

The System Perspective 

For the system perspective evaluation, we used the reference standard to calculate 

results using the best query approach and using sDCG.  We determined the best query 

for each session using two metrics, average precision (AP) and DCG.  If multiple 

queries in the same session had identical AP or DCG, we designated the first such 

query as the best query.  We used the graded relevance judgments in the reference 
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standard to calculate AP and DCG.  Because AP is calculated using binary relevance 

judgments, we considered only highly relevant documents (relevance rating of 3) as 

relevant for calculating AP.  This threshold ensured that only documents that satisfied 

the targeted information need in the scenarios were treated as relevant, a much stricter 

standard than is used in many retrieval studies, such as those using TREC data sets.  

Graded relevance judgments are inherent in the DCG metric, hence all relevance data 

are incorporated in DCG. 

We chose AP and DCG after considering a variety of metrics popular in the IR 

literature.  P@5, P@10, or R-Precision lacked enough power to discriminate among 

the queries in many of our sessions because of the sparseness of highly relevant 

documents.  These metrics generated too many ties, and often equaled zero when AP 

or DCG was positive.  If ties are ignored, none of those three metrics change which 

queries were the best queries.  We also considered bpref, but found that it, too, was 

unsuitable.  Bpref is generally robust to incomplete relevance judgments but it relies 

on comparing the ranks of pairs of relevant and judged nonrelevant documents (by this 

we mean documents that were explicitly judged as nonrelevant, not documents treated 

as nonrelevant because they were never judged).  It requires that nonrelevant 

documents have as much chance of being judged as relevant documents.  It also lacks 

discriminating power if the number of comparisons is too small [42].   The pool of 

documents judged by our domain expert were documents deemed relevant by human 

searchers, not a ranking algorithm.  Therefore the pool was biased (relevant 
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documents were more likely to be explicitly judged than nonrelevant documents) and 

very small; we had few documents that were explicitly judged as nonrelevant. 

AP is appealing because it reflects the quality of document ranking and has been 

termed stable and discriminating [41].  It only accepts binary relevance judgments, but 

in the setting that we simulated the searchers are usually interested only in highly 

relevant documents.  Treating all other documents as nonrelevant is a reasonable 

choice.  However, this choice resulted in a very small number of relevant documents, a 

situation in which most metrics are less stable.  DCG may be more stable with few 

relevant documents than other metrics because, while it assigns more value to highly 

relevant documents, it incorporates ranking information about all relevant documents 

[155]. 

For session-based discounting we calculated sDCG for all documents returned by 

the best query in each session (i.e., at rank 100) and compared the mean sDCG for 

Systems 1 and 2.  We also plotted the mean sDCG at each document rank for the two 

systems and plotted the concatenated sDCG for the ten top-ranked documents returned 

by each query in a session. 

 

The User Perspective 

We define a successful search session as a search session for which the searcher 

found at least one document to which the searcher explicitly assigned a relevance 

rating of either 2 or 3 (fairly relevant or highly relevant) on a scale of 0 to 3.  Because 

most searchers stopped searching after finding a single useful document, we report 
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two metrics based on the rank of the best user-relevant document.  We defined the 

best user-relevant document as the first explicitly identified relevant document found 

(during the earliest query, or if a query returned multiple relevant documents then the 

highest-ranked relevant document for that query) at the highest relevance level during 

a session.  If the session resulted in finding at least one document to which the user 

explicitly assigned a relevance of 3, then the best user-relevant document was the first 

such document found.  We defined this document as the best even if the user had 

already found a document with a relevance level of 2 earlier in the session.  If the 

session resulted in no documents with a user-relevance of 3, but at least one document 

to which the user explicitly assigned a relevance level of 2, then the best user-relevant 

document was the first document found with an explicit user-relevance of 2.  If no 

documents with a user-relevance of 2 or 3 were identified in a session, we considered 

it to be a failed search session.  We define the best user-relevant query in each 

successful search session as the query in which the user identified the best user-

relevant document.  Our user-perspective search performance metrics evaluate the 

rank at which the system returned the best user-relevant document in two ways: (1) 

based solely on document rank within the results of the best user-relevant query, 

independent of how quickly the searcher formulated this particular query (i.e., the best 

query approach); and (2) based on how many queries preceded the best user-relevant 

query as well as the ranking within the query (i.e., the session-based discounting 

approach). 
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We used two metrics to evaluate performance based solely on document rank.  The 

first metric is the reciprocal rank (RR) of the best user-relevant document, or 1/Rankb 

where Rankb is the rank at which the best user-relevant document appeared in the list 

of search results.  The reciprocal rank is independent of the number of search 

iterations that preceded the successful query and only reflects the performance of an 

individual query.  The second metric is the discounted gain of the best user-relevant 

document (DGbest) in which a gain value is assigned to the relevant document, 

depending on relevance score, and is then discounted to reflect the rank at which the 

document appeared on the results list.  This metric is based on DCG.   For DCG, each 

relevant document is assigned a gain value based on it relevance score.  Because most 

users quit after finding one highly relevant (or sometimes fairly relevant) document, 

we calculate the discounted gain of the best (first highly relevant) document instead of 

cumulating gain.  We calculated DGbest = gain * (1 + logb r)-1 to calculate the metric, 

where gain is the gain value assigned based on the relevance score of the document 

(either 10 or 100), r is the rank of the best document and b is the logarithm base for 

discounting by document rank.  We chose 2 for the value of b for discounting to 

simulate an impatient user.   

For session-based discounting we calculated sDGbest, which additionally discounts 

the value of DGbest to reflect the number of search iterations required to find the 

document.  We calculated sDGbest = DGbest * (1 + logbq q) -1, where bq is the logarithm 

base for session discounting and q is the position of the query in the sequence of 

queries that occurred in a session.  sDGbest is an adaptation of the ideas underlying the 
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sDCG in which the gain contributed by a document is discounted to reflect both how 

far down a result list the user must look to find a given relevant document and the 

number of search iterations required to return the document.  We chose 2 for the value 

of bq for discounting to simulate an impatient user.  A larger value of bq would result 

in less severe discounting of the results of each subsequent query and thus simulate a 

more patient user, willing to issue more queries. 

 
Table 8.6 Evaluation strategy 
 System Perspective User Perspective 
Relevance 
judgments Reference standard Each user 

Single query 
perspective 

Average precision 
  Best query defined by AP 
  MAP for comparisons 

Discounted cumulative gain 
  Best query defined by DCG 
  nDCG for comparisons 

Reciprocal rank of best document 

 

DG of best document 

Session-based 
perspective 

 
sDCG of best query 

Concatenated sDCG of top ten 
results for each query 

Number of successful search sessions 
Iteration number of best query 
Time to complete scenario 
Number of queries per session 
sDG of best user-relevant documents 

User satisfaction  
 

Ease of expressing search 
Satisfaction with results 

 
 
8.1.2.6. Statistical Analysis 

Search performance is influenced by both the search system and the scenario, and 

we hypothesized that system might interact with scenario, such that System 2 might 

have better performance on some scenarios and worse performance on others.  As a 

result, we compared the systems using a mixed effect two-way factorial analysis of 

variance model [156].  The search system is a fixed effect since we are interested only 
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in comparing System 1 and System 2.  Search scenario is a random factor; we studied 

only a small subset of all possible search scenarios but we are interested in being able 

to generalize to other scenarios.  For all comparisons, we first determined the presence 

or absence of an interaction between search system and search scenario before 

determining whether results from System 1 and System 2 were statistically different. 

 

8.2. Experimental Results 

 

8.2.1. Search Performance Evaluated from a System Perspective for Single Queries 

System 2 achieved a higher mean performance for each scenario, and for all 

scenarios combined, using either MAP or nDCG.  Over all scenarios, the improvement 

was 35.5% as measured by MAP and 28.6% as measured by nDCG.  Analysis of 

variance found no interaction between system and scenario for either MAP or nDCG.  

The difference between System 1 and System 2 was statistically significant for both 

MAP (p < 0.02) and nDCG (p < 0.01).  As expected, given the varying difficulty of 

the scenarios, the difference among scenarios was highly significant using either 

performance metric.  Tables 8.7 and 8.8 show the mean performance and standard 

error (SE) by system and scenario of the best (system-oriented) query for each session 

using AP (Table 8.7) and nDCG (Table 8.8).  Figure 8.7 shows the shape of the 

average nDCG curve for each system over all scenarios combined.  This plot indicates 

that System 2 returns relevant documents at rank 1 more often than System 1, and this 

early retrieval is responsible for its better performance. 
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Figure 8.7 Mean nDCG of the best queries for all scenarios 
 
 
 
Table 8.7 Average precision of the best query per session (mean ± SE) 
System Scenario A Scenario B Scenario C Scenario D All scenarios 
1 0.28 ± 0.03 0.53 ± 0.11 0.21 ± 0.05 0.19 ± 0.03 0.31 ± 0.03 
2 0.56 ± 0.06 0.58 ± 0.11 0.26 ± 0.03 0.27 ± 0.06 0.42 ± 0.04 
 
 
 
 
Table 8.8 nDCG of the best query per session (mean ± SE) 
System Scenario A Scenario B Scenario C Scenario D All scenarios 
1 0.44 ± 0.03 0.52 ± 0.09 0.38 ± 0.07 0.36 ± 0.03 0.42 ± 0.03 
2 0.71 ± 0.05 0.55 ± 0.09 0.48 ± 0.04 0.41 ± 0.06 0.54 ± 0.03 
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We did not require searchers to use semantic components when using System 2.  

We compared performance of System 1 to System 2 without regard to whether a 

searcher used semantic components in a query submitted to System 2.  We did this for 

three reasons: (1) the System 2 results display included information about semantic 

components regardless of whether the query used semantic components, (2) we 

wanted to assess the overall effect of making semantic components available to 

searchers and choices about whether to use a feature is part of such an assessment, and 

(3) we wanted to maintain the randomization applied at the beginning of the study.  

Using this approach ensured that the results are less likely to over-predict the effects 

of usage in an operational setting. 

Twenty-nine of the 30 searchers used semantic components in at least some of 

their queries.  Fifty-six (93%) of the 60 search sessions with System 2 contained at 

least one semantic component query.  The best query included at least one semantic 

component in 46 (82%) of those 56 sessions, whether determined by AP or by DCG.   

For all but two System 2 sessions, the best query was the same when determined by 

either AP or DCG.  In both cases, documents with relevance scores of 1 or 2 increased 

DCG but not AP.  Queries to System 2 resulted in 506 instances of retrieving a 

document with a relevance score greater than zero.  In 92 (18%) instances, the rank of 

a relevant document was changed by a semantic component part of the query.  In 46 

instances, reranking resulted in a relevant document being rated higher (appearing at a 

lower rank, i.e., higher on the results list).  In the other 46 instances, reranking resulted 

in a relevant document being rated lower (appearing lower on the results list) but the 
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changes were of a smaller mean magnitude than for the rerankings that result in 

relevant documents being rated higher.  Changes ranged from a rank improvement of 

94 (from 96th to 2nd) to a 17-place worsening (from 24 to 41 and from 25 to 42).  The 

mean change was an improvement in rank by 8.1 places. 

The addition of semantic components consistently improved search performance 

as measured by MAP and nDCG for the best query in each session, suggesting that 

semantic components can be a valuable supplement to existing indexing techniques. 

The results reflect both the use of semantic component information in the query to 

return relevant documents and the ability of searchers to use the model to express 

information needs. 

 

8.2.2. Search Performance Evaluated from a User Perspective for Single Queries 

 

8.2.2.1. Successful Search Sessions 

Thirty physicians each completed four search scenarios, resulting in 120 search 

sessions.  Of the 107 successful search sessions, the searcher found at least one highly 

relevant document (relevance rating of 3) in 93 sessions (87% of successful sessions, 

78% of all sessions).  Only 14 sessions (12%) were terminated by the searcher after 

finding only a fairly relevant document.  Eleven sessions (9%) were terminated by the 

searcher after finding no relevant documents, and two sessions (2%) were terminated 

after finding only a marginally relevant document. 
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Table 8.9 shows the number of successful search sessions using each of the 

experimental systems for each of the four scenarios.  Each scenario was searched by 

15 searchers with System 1 and 15 searchers with System 2.  Across the four 

scenarios, searchers completed three more scenarios using System 2 than when using 

System 1.  If the definition of success is restricted to only the highest relevance rating, 

the difference remains the same; System 2 resulted in 48 successful searches 

compared to 45 with System 1. 

 
Table 8.9 Number of successful search sessions 
System Scenario A Scenario B Scenario C Scenario D All scenarios 
1 14 9 15 14 52 
2 15 10 15 15 55 
 
 

Overall, searchers were quite successful at finding at least one relevant document.  

Use of System 2 resulted in more successful search sessions than System 1.  However, 

a detailed examination revealed that for 12 of the 13 unsuccessful search sessions, 

failure to find user relevant documents could be attributed either to disagreements 

about whether a document was actually relevant to the scenario or to failure of the user 

to recognize a relevant document within a list of returned hits.  Scenarios A and D 

each had one unsuccessful session.  In both cases, at least one of the queries returned a 

highly relevant document (according to the reference standard) at a very low rank (1 

and 4 respectively) that was never examined by the user.  Scenario B had 11 failed 

sessions.  Scenario B was controversial in that only one document was judged highly 

relevant in the reference standard.  Five of the users who examined this document also 

judged it highly relevant, and three judged it fairly relevant, but 6 judged it irrelevant 
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and one judged it only marginally relevant.  In 6 of the failed sessions, the user 

examined this document, did not find it relevant, and did not find another document he 

scored as relevant.  In another five sessions, the highly relevant document was 

returned within the top 15 hits for at least one query (ranks 1, 1, 4, 4, and 15) but the 

searcher did not click on the document.  Only one session, a search on Scenario B 

using System 2, was a failed search from the system perspective, in that the queries 

issued failed to return any documents with relevance ratings of 2 or 3. 

For the sessions in which the user did not view documents considered highly 

relevant in the reference standard, we do not know whether the searchers would have 

explicitly regarded the document as irrelevant if they had viewed the document.  We 

also do not know whether the title, summary, and snippet displayed in the results were 

not informative enough to indicate the document’s relevance to the scenario.  It is 

possible that System 2 was more helpful for recognizing relevant documents than 

System 1 because it provided additional information about each returned document. 

 

8.2.2.2. Time to Complete Search Scenarios 

We define the time to complete a search scenario as the time elapsed from when 

the searcher was given the scenario to read until the searcher declared that he or she 

was finished searching.  The post-session interview and questionnaire were not 

considered as part of the time spent in a search session.  Table 8.10 shows the mean 

time in seconds to complete each search scenario using either System 1 or System 2.  

Two-way analysis of variance revealed no interaction between system and scenario.  
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Scenario had a highly significant effect on time to complete a session (p < .000005).  

On average, search sessions took 1 minute and 22 seconds longer using System 2 than 

System 1, a difference that was statistically significant (p < 0.02). 

Table 8.10 Time (in seconds) to complete search scenarios (mean ± SE) 
System Scenario A Scenario B Scenario C Scenario D All scenarios 
1 265.7 ± 30.2 529.0 ± 49.8 293.5 ± 29.9 302.9 ± 38.0 347.8 ± 23.0 
2 364.7 ± 55.8 554.7 ± 66.1 454.7 ± 46.4 346.9 ± 32.3 430.2 ± 27.4 

 

Two factors may have contributed to sessions lasting longer when using System 2: 

• Searchers issued more queries with System 2 (see below). 

• Searchers were unfamiliar with semantic components and with the System 2 

interface.  Searchers might have spent extra time looking at the descriptions for 

the document classes and semantic components and deciding how to formulate 

queries. 

 

8.2.2.3. Number of Queries Per Search Session 

We define the number of search iterations per session as the number of queries 

issued during a session.  Search sessions in our study ranged from 1 to 11 queries with 

a mean of 2.85 and a median of 2 queries per session.  Table 8.11 shows the average 

total number of search iterations by scenario and by system.  Searchers consistently 

entered more queries into System 2 than into System 1.  We also report the iteration 

number at which the best user-perspective query (Table 8.12) and the best system-

perspective query (Table 8.13) occurred in each session. 
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Table 8.11 Number of search iterations (queries) per session (mean ± SE) 
System Scenario A Scenario B Scenario C Scenario D All scenarios 
1 1.67 ± 0.3 3.93 ± 0.6 1.87 ± 0.4 2.67 ± 0.5 2.53 ± 0.2 
2 1.60 ± 0.3 4.33 ± 0.7 3.47 ± 0.7 3.33 ± 0.6 3.18 ± 0.3 
 
 
Table 8.12 Iteration number of best user-perspective query in each session (mean ± SE) 
System Scenario A Scenario B Scenario C Scenario D All scenarios 
1 1.67 ± 0.3 3.87 ± 0.6 1.87 ± 0.4 2.53 ± 0.4 2.48 ± 0.2 
2 1.53 ± 0.3 3.73 ± 0.7 3.13 ± 0.6 3.33 ± 0.6 2.93 ± 0.3 
 
 

There was no interaction between system and scenario for the number of search 

iterations per session, the iteration number of the best user-perspective query in each 

session, the iteration number of the best system-perspective query as determined by 

AP, or the iteration number of the best system-perspective query as determined by 

nDCG.  The difference between search systems was not statistically significant with 

respect to the number of search iterations per session.  Although the mean iteration 

number of the best user-perspective query and the best system-perspective query as 

determined by either AP or nDCG was greater for System 2 than for System 1, the 

difference was statistically significant only for the best system-perspective query as 

determined by AP (p < 0.05).  The difference was not significant for either the best 

queries as determined by the reciprocal rank of the best user-relevant document or for 

the best queries as determined by nDCG.  The difference between scenarios was 

highly significant for the number of search iterations per session (p < 0.0001) and the 

iteration number of the best user-perspective query (p < 0.0005).  The difference 

between scenarios was less dramatic but still statistically significant for the iteration 

number of the best system-perspective query as determined by AP (p < 0.04) and by 

nDCG (p < 0.005). 
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Table 8.13 Iteration number of best system-perspective query by AP and by nDCG (mean ± SE) 
System Scenario A Scenario B Scenario C Scenario D All scenarios 
AP      
1 1.47 ± 0.2 2.27 ± 0.4 1.6 ± 0.3 2.13 ± 0.3 1.87 ± 0.2 
2 1.40 ± 0.2 2.67 ± 0.5 2.87 ± 0.6 2.87 ± 0.5 2.45 ± 0.2 
  
nDCG  
1 1.47 ± 0.2 3.13 ± 0.6 1.60 ± 0.3 2.13 ± 0.4 2.08 ± 0.2 
2 1.40 ± 0.2 2.73 ± 0.5 2.87 ± 0.6 3.33 ± 0.6 2.58 ± 0.3 
 
 

Although System 2 ranked documents in a better order, as determined by the 

reference standard, the users did not find documents to satisfy the information needs in 

the scenarios more quickly with System 2. 

 

8.2.2.4. Search Performance Based on Explicit User Relevance 

Table 8.14 shows the mean search performance by system and scenario as 

evaluated using reciprocal rank (RR) and Table 8.15 shows the mean search 

performance as evaluated by the DG of the best user relevant document.  Analysis of 

variance revealed no interaction between system and scenario with respect to 

reciprocal rank or discounted gain.  The mean reciprocal rank was higher for System 2 

than for System 1 for three of four scenarios, and the mean discounted gain of the best 

user-relevant document was higher for System 2 than for System 1 for all four 

scenarios.  Both metrics were higher for System 2 for all scenarios combined, 

however, the difference was not statistically significant.  The difference between 

scenarios was highly significant with respect to both the reciprocal rank of the best 

user-relevant document (p < 0.0001) and the mean discounted gain of the best user-

relevant document (p < 0.00000001). 
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This data indicates that users found relevant documents at somewhat better ranks 

(higher on the results list) with their best queries when using System 2 compared to 

System 1, but the difference was not enough to be statistically significant.  Although 

System 2 returned documents in a better rank order than System 1 (according to the 

reference standard), the individual searchers exhibited considerable variation with 

respect to their implicit and explicit relevance judgments and did not always agree 

with the reference standard.  They often skipped over documents that were highly 

relevant in the reference standard, implicitly evaluating the documents as nonrelevant. 

 
Table 8.14 Reciprocal rank of the best user-relevant document (mean ± SE) 
System Scenario A Scenario B Scenario C Scenario D All scenarios 
1 0.75 ± 0.10 0.30 ± 0.10 0.45 ± 0.07 0.53 ± 0.11 0.51 ± 0.05 
2 0.83 ± 0.08 0.47 ± 0.12 0.38 ± 0.08 0.58 ± 0.09 0.57 ± 0.05 
 
 
Table 8.15 Gain, discounted by rank, of the best user-relevant document (mean ± SE). 
System Scenario A Scenario B Scenario C Scenario D All scenarios 
1 70.58 ± 10.1 23.80 ± 9.0 38.44 ± 6.3 57.57 ± 9.8 47.60 ± 4.9 
2 84.23 ± 7.1 26.31 ± 10.1 39.21 ± 7.5 60. 91 ± 7.7 52.66 ± 4.9 
 
 

8.2.2.5. User Satisfaction 

For both systems, we asked the searchers at the end of each session (1) how easy 

was it to express what you wanted to find, and (2) how satisfied were you with the 

results of your search.  For both questions, subjects were asked to circle an answer on 

a 5 point scale in which 1 represented either very easy or very satisfied and 5 

represented very difficult or very unsatisfied.  Because only the extremes were labeled, 

we treated the answer scales as interval scales.  Tables 8.16 and 8.17 show the results, 

by scenario and by system, of the ease of expression and satisfaction with search 
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results, respectively.  Two way analysis of variance did not indicate a significant 

interaction between scenario and system with respect to ease of expressing the search.  

There was no significant difference between the two systems with regard to expressing 

the search, but there was a significant difference between scenarios (p < 0.001).  With 

respect to search results, two way analysis of variance did indicate a significant 

interaction between scenario and satisfaction.  The effect of scenario on satisfaction is 

not surprising given the evidence that it was much more difficult to find relevant 

documents for some scenarios than for others.  Users were least satisfied with both 

systems after searching for Scenario B, the scenario that had controversial relevance 

judgments and for which users spent the most time and had the worst results 

(according to user relevance assessments).  We also show the number of searchers 

who chose each score of the ease of expression and satisfaction with search results in 

Figures 8.8 and 8.9, respectively. 

 
Table 8.16 Ease of expressing search (mean ± SE) 1 = very easy; 5 = very difficult 
System Scenario A Scenario B Scenario C Scenario D All scenarios 
1 1.4 ± 0.3 2.7 ± 0.3 1.7 ± 0.3 2.3 ± 0.3 2.0 ± 0.2 
2 1.3 ± 0.2 2.5 ± 0.4 2.1 ± 0.4 2.3 ± 0.3 2.1 ± 0.2 
 
 
Table 8.17 Satisfaction with results (mean ± SE) 1 = very satisfied; 5 = very dissatisfied 
System Scenario A Scenario B Scenario C Scenario D All scenarios 
1 1.3 ± 0.3 3.2 ± 0.4 1.5 ± 0.2 2.3 ± 0.4 2.1 ± 0.2 
2 1.1 ± 0.1 3.5 ± 0.4 3.0 ± 0.4 1.7 ± 0.3 2.3 ± 0.2 
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Figure 8.8 Survey responses regarding ease of expressing the search with each system 
 
 
 
8.2.3. Search Performance Evaluated Using Session-Based Discounting 

We calculated session-based discounting metrics for both the system perspective 

and the user perspective.  Figure 8.10 shows a plot of mean sDCG at each document 

rank for the best queries in each session for the two systems.  Table 8.18 shows the 

mean sDCG (at document rank 100) for the best system-perspective query in each 

session.  Although the overall mean for System 2 was somewhat higher than for 

System 1, the difference between search systems was not statistically significant.  

When using System 2, the best queries tended to occur after more query iterations.  

Discounting for query iteration diminishes the apparent benefit of better document 

ranking by System 2 for the best queries. 
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Figure 8.9 Survey responses regarding satisfaction with search results from each system 
 
 
 
Table 8.18 sDCG of the best query per session (mean ± SE) 
logarithm base = 2 for discounting rank and for discounting query iteration 
System Scenario A Scenario B Scenario C Scenario D All scenarios 
1 74.7 ± 8.6 41.0 ± 10.0 110.2 ± 23.8 54.1 ± 8.8 70.0 ± 7.8 
2 121.6 ± 12.5 36.3 ± 7.5 114.8 ± 14.1 49.1 ± 12.7 80.4 ± 7.6 
 
 

Table 8.19 shows the mean sDCG for the best user-relevant document.  Results 

varied by scenario but the overall difference between System 1 and System 2 was 

small and not statistically significant. 

 
Table 8.19 sDG of the best user relevant document per session (mean ± SE) 
System Scenario A Scenario B Scenario C Scenario D All scenarios 
1 64.10 ± 10.9 8.13 ± 3.0 29.85 ± 6.6 42.61 ± 10.0 36.17 ± 4.8 
2 70.32 ± 8.7 18.29 ± 8.8 23.90 ± 6.8 33.98 ± 7.6 36.62 ± 4.7 
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Figure 8.10 Mean sDCG of best queries for Systems 1 and 2 
 
 

We also performed an analysis based on entire sessions.  Although results lists 

displayed up to 100 hits, users rarely looked beyond the more highly-ranked hits.  We 

did not try to capture data about how far down the list the users scanned, but we know 

that the user clicked on a document appearing after rank 14 in only 4 of 120 sessions 

(3.3%).  The user clicked on a document ranked between 11 and 14  in only six 

additional sessions (5%).  We therefore concatenated the top 10 documents from each 

query in a session, calculating sDCG on the single concatenated list of results for each 

session.  If a query returned fewer than ten results, we treated the empty slots in the 

list as if they contained irrelevant documents since there is a cost to the user for 

formulating each query and looking at the list, even if the list is not full.  Sessions with 
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only one or a few queries were treated as having no additional gain after the last query.  

We then averaged the resulting sDCG vectors for each system and plotted the results 

in Figure 8.11.  We carried the results out to 110 places because one session had 11 

queries.  The concatenated results show that System 1 and System 2 are fairly similar 

for the first 20 ranks, corresponding to the first two queries, then System 2 has a 

consistently higher sDCG.  The rise in sDCG is steeper for System 2 than for System 

1 as results from each new query are added (at ranks 1, 11, 21 and so forth), reflecting 

the appearance of relevant documents in top-ranked positions. 

Figure 8.11 Mean sDCG for the concatenated top ten results of each query in a session 
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8.2.4. Effect of Relevance Assessments in the Reference Standard 

We examined the possible effect on our results of disagreements with respect to 

relevance judgments.  Sixteen of the 41 documents in the relevance standard were 

scored as highly relevant.  For 14 of those 16, there was substantial agreement: all the 

users who clicked on those documents rated them as either highly relevant or fairly 

relevant.  Only two documents were controversial.  The single relevant document for 

Scenario B was judged highly or fairly relevant by eight searchers but was judged 

irrelevant by six and marginally relevant by one.  The disagreement concerned (1) 

whether the document only applied to the first trimester of pregnancy, and (2) whether 

any search, instead of a phone call, was an appropriate action.  One of the nine highly 

relevant documents for Scenario C was rated as either highly or fairly relevant by 12 

searchers but two searchers rated it irrelevant.   

Because the only highly relevant document for Scenario B was controversial, we 

also calculated nDCG when Scenario B was excluded (the system-oriented evaluation) 

and repeated the analysis of variance.  The improved performance of System 2 was 

even more highly significant (p < 0.002).  Exclusion of Scenario B from the 

performance evaluations based on explicit user relevance does not change the results 

of that analysis. 

 

8.2.5. Effect of Document Selection for Indexing  

We strategically chose documents to be indexed before the searching study and 

then retrospectively analyzed the effect of our choices because our resources for 
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manual semantic component indexing were limited.  The searchers identified 37 

documents as being at least marginally relevant (score ≥ 1) to one of the scenarios.  

The reference standard included those 37 documents plus an additional 4 documents 

that we identified before the study, which were not viewed by any of the searchers, 

resulting in a total of 41 documents.  We indexed 30 of the 37 user-relevant 

documents and all 4 additional ones.  Of the seven documents that were not indexed, 

only three received at least one relevance rating of 3 and none were scored as highly 

relevant in the reference standard. 

Because we deliberately tried to index all relevant documents, we were concerned 

that the presence of semantic component indexing alone might bias the performance 

results.  Of the 14993 hits returned by all 343 queries in the study, 5459 hits (36%) 

had been indexed with semantic components.  (The same document could be returned 

by multiple queries).  Of the 5459 indexed hits, 508 (9%) were highly relevant and 

4398 hits (81%) were irrelevant.  The remaining hits were marginally or partially 

relevant. 

Table 8.20 shows the rate at which each system returned indexed documents (Fi) 

and the rate each returned highly relevant documents (Fr) in ranks 1 to 30 (in 

increments of 10), and at all ranks.  We defined these rates as: 

 Fi = Ti/Tr and Fr = Ri/Tr 

where Ti is the number of documents indexed with semantic components that were 

retrieved by a system over all queries, Tr is the total number of documents retrieved 

by a system over all queries (indexed or not), and Ri is the number of highly relevant 
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documents retrieved by a system over all queries (indexed or not).  For asterisk-only 

semantic component queries, System 2 only returned documents with that semantic 

component and therefore Fi = 1.0 for those queries.  This effect explains the overall 

higher Fi for System 2.  If we consider only System 2 queries that did not use an 

asterisk filter (S2 no*), the overall Fi is nearly identical to System 1.  This result is not 

surprising because System 2 returns the same documents as would be returned by 

System 1 for the same topical query. 

 

Table 8.20 Fi and Fr for System 1 (S1) and System 2 (S2) 
Document Ranks Fraction Indexed (Fi) Fraction Relevant (Fr) 
 S1 S2 S2 no * S1 S2 S2 no * 
1 – 10  0.58 0.74 0.61 0.089 0.130 0.104 
11 – 20  0.48 0.58 0.48 0.045 0.065 0.067 
21 – 30  0.41 0.47 0.40 0.010 0.025 0.024 
1–100 (All) 0.32 0.41 0.34 0.022 0.039 0.029 
 
 

Figure 8.12 shows the corresponding rates for all ten groups of ranks (up to 

document rank 100) expressed as ratios.  The blue columns (on the left) show Fi for 

System 2 divided by Fi for System 1.  The red columns (right) show Fr of System 2 

divided by Fr of System 1.  Although System 2 returned more indexed documents 

than System 1, the rate at which System 2 returned highly relevant documents exceeds 

what could be expected based solely on the higher rate of returning indexed 

documents.  Plotting the same ratios of System 2 to System 1, but excluding queries 

with an asterisk in a semantic component box, results in a graph with a similar profile, 

as shown in Figure 8.13, but the S2/S1 ratios (all ranks) are 1.06 for Fi and 1.35 for Fr 

instead of 1.28 for Fi and 1.80 for Fr.  We focus on the data for the first 30 ranks 
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because those ranks are of most interest to searchers and because so few highly 

relevant documents were returned by either system at the higher ranks.  System 1 and 

System 2 returned 105 and 163 highly relevant documents at ranks 1-10, respectively, 

but only 3 and 10 highly relevant documents at ranks 51-60.  Small changes in the 

number of relevant documents caused the seemingly erratic behavior of the ratio for 

Fr at higher ranks. 

 

8.3. Discussion 

 

8.3.1. Evaluation Perspectives: User versus System 

We evaluated our experimental search systems from both a system-oriented 

perspective and a user-oriented perspective.  Both perspectives are important for 

gauging the potential usefulness of a new approach to indexing and searching such as 

ours.  The system perspective evaluation of a ranking algorithm is independent of 

whether a user recognized that a document might be useful and opened it.  The system 

perspective is also independent of variations in how strictly users judged relevance 

(assigning graded relevance scores) or different opinions about what information 

satisfies a given scenario.  Evaluations of ranking algorithms are important because 

adequate document ranking is necessary for a search system to provide value to the 

user.  But a good algorithm is not sufficient if the user cannot extract value due to a 

poor interface or a difficult query language.  The user perspective reflects the actual 

experience of a real user, which ultimately will determine the success of a system.  Yet 
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Figure 8.12 Fi and Fr expressed as a ratio System2/System1 
 
 

Figure 8.13 Fi and Fr expressed as a ratio of System 2/System 1.  Semantic component queries with 
only an asterisk have been omitted 
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the user experience is affected by multiple factors, including the user interface, 

amount of training and experience with a new search system, accuracy of implicit 

relevance assessments based on the results list returned from a search, interpretation of 

the scenarios, and ease of understanding the documents. 

Our evaluation from a system perspective was different from the usual test-

collection approach.  We used queries submitted by real users in an interactive setting, 

not the text describing the information needs, as is done in many test collection-based 

studies.  It was our use of independent expert relevance judgments that makes this a 

system-oriented evaluation.  We used graded relevance judgments in a common 

reference standard to calculate commonly-used IR evaluation metrics instead of 

individual user assessments for each query.  Based on the system-oriented evaluation, 

we conclude that semantic components can be a valuable supplement to existing 

indexing and searching techniques.  The addition of semantic components, as reflected 

in the use of System 2, consistently improved search performance as measured by 

MAP and nDCG for the best query in each session. 

Our evaluation from the user perspective was based on the users’ queries and 

individual user relevance judgments for those queries.  Because the scenarios 

indicated a need for specific information, most users quit searching once they found a 

single highly relevant document.  This gave us much less information to use in the 

evaluation.  We used the rank of the single best user-relevant document per session 

because we did not want to penalize the searches by users who quit after finding one 

relevant document.  We calculated reciprocal rank and discounted gain because other 
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metrics are less appropriate in the face of a single relevant document per search.  From 

the user perspective, we did not find a significant difference between the two systems, 

although the mean scores for System 2 were somewhat better than for System 1.  The 

lack of a significant effect on results achieved by the user is also reflected in the user 

questionnaires.  User satisfaction is a global score that reflects all aspects of the user 

experience, including the user interface and possibly even the document collection, not 

just a ranking algorithm.  The query interface for System 2 was more complex to use 

and required more thought than System1.  If the user did not achieve better results, 

even if the underlying document ranking was better, then it is not surprising that user 

satisfaction was not higher for System 2.  Our results highlight the importance of 

evaluating new systems from multiple perspectives.   

We examined the reasons for the disparity between the user perspective evaluation 

and the system perspective evaluation in considerable detail.  Of the 107 successful 

search sessions (sessions for which the user found at least one highly relevant or fairly 

relevant document) there were 16 instances, distributed over all four scenarios, in 

which the best query from a system perspective was different from the best query from 

the user perspective.  We classified these instances as follows: 

• In 12 cases, the system best query and user best query were distinct, and the 

system best query preceded the user best query.  In each case, the system 

returned highly relevant documents early in the results list.  The user either 

failed to notice the document, or determined that the document was not 

relevant based on the title and summary.  We use the term missed document for 
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highly relevant documents from the reference standard that were ignored by 

the user.  The first missed document appeared at ranks: 1 (4 times), 2 (3 times), 

and 3, 4, 5, 15, 47 (1 time each).   

• In 2 cases, the system best query and the user best query were distinct, and the 

user best query preceded the system best query.  Both cases involved 

differences in relevance judgments and one also involved missed documents.  

In one case, for Scenario B, the user identified a document as highly relevant 

that the reference standard labeled as marginally relevant.  This was the user 

best query for the session.  Despite having labeled the document as highly 

relevant, the user issued three more queries, suggesting he was not really 

satisfied with the document that he found.  One of those queries returned the 

one highly relevant document in the reference standard at rank 15 (the system 

best query).  In the second case, the user identified a fairly relevant document 

at rank 2 (the user best query), then issued another query and again found only 

a fairly relevant document, this time at rank 5.  According to the reference 

standard, both queries returned highly relevant documents at rank 2 but the 

later query also returned additional highly relevant documents and therefore 

had a higher nDCG  and was the system best query. 

• In 2 cases, multiple queries tied for system best query (i.e., they had the same 

nDCG) and one of those queries, but not the first, was the user-best query.  In 

both cases, multiple queries returned the same hit lists.  Documents that were 
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missed in the first query were found in a later query (in which they appeared at 

the same rank as in the earlier query). 

The phenomenon of missed documents was a striking finding in our experiment.  

Missed document were also responsible for seven unsuccessful search sessions.  Why 

did the users not click on highly relevant documents that appeared high on a result 

list?  We suggest three possibilities: 

• A known- item search that distracted the user from other documents.  

Interviews with the participants revealed that, because of their familiarity with 

the documents, the searchers sometimes searched for a particular familiar 

document.  This focus on a known document may have caused the user to 

ignore other documents, at least initially. 

• A legitimate relevance disagreement.  Our searchers were familiar with many 

of the documents in the collection.  In some cases they may have had a strong 

and accurate sense of what was in a document and made a conscious, if 

implicit, relevance assessment when they ignored the document in a result list. 

• An inadequate or misleading indication of document contents.  The interface 

displayed the title, a human-authored summary, and an automatically generated 

snippet showing the query term in context for each document in the result list.  

The information displayed was the same as that in the operational system.  In 

addition, System 2 also displayed semantic component information for the 

documents that had been indexed.  Nevertheless, it appears that the information 
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in the results display might not have conveyed document contents adequately 

for accurate initial user relevance assessment. 

We did not design this experiment to study relevance assessment so we do not 

have enough information to indicate how often each of these factors may have 

contributed to documents being missed.  The specific nature of the information needs 

in the scenarios and the searchers’ familiarity with the domain makes it unlikely that 

their understanding of the problem changed during the course of a search session.  

Certainly the differences in relevance judgments for Scenario B highlight the effect of 

differing relevance judgments on assessing system performance.  A user interface that 

provides a better preview of returned documents could help prevent searchers 

overlooking relevant documents due to insufficient or misleading information about 

document contents. 

The phenomenon of missed documents (and the factors that cause it) may help 

explain the failure of system performance improvements to have a significant effect on 

user performance, as has been documented in other studies [97-99, 157].  For example, 

Turpin and Hersh [98] analyzed user performance in interactive instance recall and 

question answering tasks.  They noted that 30 – 50% of relevant documents returned 

in the top ten positions were not read by the searchers.  Their research, like ours, did 

not address why searchers did not read the documents.  Understanding why searchers 

fail to read relevant documents, and developing methods to make the potential 

relevance of documents more apparent in the search results, is an important area for 

additional research. 



www.manaraa.com

 

324

8.3.2. Evaluation Perspectives: Query versus Session 

We also evaluated our system from another pair of perspectives: the single-query 

perspective and the search-session perspective.  Test-collection–based studies 

typically formulate one query for each topic and compare systems based on mean 

performance over a set of topics.  We were interested in knowing how well each 

system would perform given a “good” query.  We therefore identified the query with 

the best performance in each search session in order to compare the potential 

performance of the two systems.  However, because we are interested in supporting 

domain experts whose time for searching may be limited, the number of queries to 

complete a search is also important.  We framed the users’ task as finding the 

necessary information to make a clinical decision, so searchers entered queries and 

examined results until either finding the desired information or declaring the search a 

failure.   

Overall, users spent more time using System 2 and entered more queries into 

System 2 than System 1.  We saw some obvious reasons for query failure that 

occurred in both systems, including typos, mistakes in using the query syntax, and 

searches that were either too broad (thousands of hits) or too narrow (zero or few hits).  

Two possible explanations for the greater number of queries entered into System 2 are: 

• A larger number of queries that returned no hits, 34 in System 2 as compared 

to 20 in System 1.  Twenty-four of the 34 queries (70.6%) with no hits in 

System 2 involved use of the asterisk operator in semantic component queries, 

which acted as a filter.  Although the asterisk would match any text in the 
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designated semantic component, only documents that matched the topical 

query and that contained an instance of the requested semantic component 

were returned.  In retrospect, using the asterisk to boost document ranking, 

instead of as a filter, might have improved session-based search performance 

with System 2. 

• There was likely a need to learn how to use a new system.  Although the 

training session allowed participants to use both systems, they had little time to 

experiment and discover how to use semantic components to best advantage.  

In addition to the expected learning curve, because semantic components were 

new to the searchers, we believe the searchers also engaged in some 

experimentation with the search interfaces during the experiment, especially 

with System 2.   

Semantic components per se seem unlikely to have caused a substantial increase in 

number of queries.  The topical queries entered into both systems for a given scenario 

were quite similar.  Addition of semantic component query terms, other than the 

asterisk, resulted in re-ranking of the result set but not omission of documents.  

Although re-ranking resulted in both increasing and decreasing the rank of relevant 

documents, the mean change was an improvement in the rank of relevant documents 

by 8.1 places. 

Session-based discounting allowed us to explore the effect of query sequencing in 

more detail.  Despite the larger number of queries issued with System 2, the session-

based gain was not less, from either the user or the system perspective.  Improved 
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document ranking in the best queries, once issued, largely countered the effect of 

query sequence discounting although the difference between the two systems was not 

statistically significant when session-based discounting was applied.  We used a 

logarithm base of 2, which simulates an impatient user by aggressively discounting 

gain for both document rank and query iteration.  We did not test whether a different 

combination of discounting parameters changes the results. 

When we concatenated the top ten results from each query in the session, 

simulating what a user would see if he looked only at the first ten documents returned 

by each query, the resulting mean curve for System 2 appears substantially better than 

that for System 1 only after about the third query.  The data from both the best query 

and concatenated session analyses suggest that most of the difference between systems 

was attributable to a markedly better performance by System 2 than by System 1 for 

Scenario A. 

Concatenating the top ten documents places the emphasis on ranking quality at the 

top of a result list, but is only a rough approximation of the user experience.  

Individual users may look at more, or fewer, documents and may vary how far down a 

list they look based on the documents that appear earlier in the list.  The relative cost 

to a user for a query that returns fewer than ten documents (or whatever threshold is 

chosen) is unknown.  We believe that a session based approach to interactive user 

studies is an important area for future IR research. 
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8.3.3. Effect of Partial Indexing on Study Results 

We successfully predicted and indexed all the highly relevant documents in the 

reference standard, although there may be highly relevant documents in the collection 

that we did not discover.  We also predicted and indexed a reasonable selection of 

nonrelevant documents likely to be returned by the queries in the study.  Over half of 

the highest-ranked documents returned by either system had been indexed with 

semantic components.  Given that System 1 ignores semantic component indexing and 

that there were few relevant documents, the high frequency of semantic component 

indexing among retrieved documents means that we indexed a high proportion of the 

nonrelevant documents likely to compete with relevant documents for retrieval.  

Indexing competing, but nonrelevant, documents minimized any bias towards retrieval 

of relevant documents due only to the presence of semantic component indexing.  

Comparing the ratio of the two systems for Fi and Fr shows that System 2 returned 

highly relevant documents at a rate higher than would be expected based on the 

indexing rate alone.  Our analysis indicates that the improved performance of System 

2 cannot be attributed to our selective indexing. 

 

8.3.4. Limitations of the Searching Study 

We recognize, of course, that this study had limitations.  The experiment was 

limited to a single user group searching over a single collection of documents in a 

single domain.  The number of search scenarios was quite small, especially compared 

to the number of topics typical of TREC, but unlike laboratory-style evaluations we 
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had 30 domain experts as end-users who formulated queries and interacted with the 

system, resulting in 120 search sessions.  As intended, the scenarios varied in 

difficulty.  Overall, scenario was a stronger determinant of search performance than 

search system, but two-way analysis of variance indicated that search system and 

scenario did not interact and allowed us to examine their effects separately.  It is 

encouraging that System 2 generally performed well for all 4 scenarios.  This study is 

the first empirical study to evaluate semantic components; establishing generalizability 

will require more research, but we believe our current results warrant further 

investigation into the potential usefulness of this model. 

 

8.4. Summary 

In this chapter we presented an interactive searching study in which thirty domain 

experts searched for documents to satisfy four realistic searching scenarios.  Each 

searcher used a baseline searching system with full-text and keyword indexing for two 

scenarios and an experimental searching system with semantic components in addition 

to full text and keyword indexing for the other two scenarios.   

We analyzed the searching results from both a system-oriented perspective and a 

user-oriented perspective.  From the system-oriented perspective, when they used the 

experimental system with semantic components the searchers attained results with 

better document ranking, as determined by a reference standard of relevance 

judgments.  From the user-perspective, the searchers entered more queries and spent 

more time searching when they used semantic components.  Although the searchers 
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found relevant documents at somewhat better rankings when using the system with 

semantic components, based on their own relevance judgments, the difference 

between systems was not statistically significant.  We discussed several reasons why 

the search results were significantly better from the system perspective but not from 

the user perspective.  We also used a session-based metric, sDCG, for evaluating 

search results in our multiple-query search sessions.  By discounting the gain value of 

relevant documents returned by later queries, sDCG facilitates comparing search 

systems in interactive settings where users can refine their queries in addition to 

scanning further down a results list to find relevant documents.  When we applied 

session-based discounting to our results, the system with semantic components 

performed somewhat better than the baseline system, but the results were not 

statistically significant. 
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Chapter 9    Conclusions and Future Work 

 

In this dissertation, we introduce the semantic components model for 

supplementing traditional document indexing techniques (such as full text and 

keyword indexing) used in information retrieval systems.  The semantic components 

model uses domain-specific and collection-specific concepts and relationships to 

introduce additional information about the semantic content of documents into the 

process of matching documents to information needs.  A semantic component schema 

consists of a set of document classes that describe logical groupings of documents 

within a document collection and a set of semantic components for each class.  

Document classes can be based on the types of domain-specific topics addressed by 

the documents or on the purpose and logical structure of the documents.  Semantic 

components represent the types of information that are common in the document, and 

that contain content likely to be searched by users.  We have so far considered three 

ways that semantic components can be useful: 

• searching for query terms within specific semantic components 

• indicating a preference for documents containing particular semantic 

components 

• displaying a list of the semantic components present in the document, and their 

sizes, for each document in the search results 

 
We also imagine that an IR system using semantic components could employ user 

interface enhancements to help searchers as well.  For example, when a searcher clicks 
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on a link in a search result, the system could display the corresponding document 

scrolled to the beginning of a semantic component instance targeted by the search, 

with the semantic component instance highlighted, in addition to highlighting 

matching terms in the query.  Or, a user interface could display the semantic 

component instance that matches the query as a series of excerpts.  We have not yet 

implemented or studied such user interface enhancements because we first wanted to 

investigate the feasibility of semantic component indexing and the potential benefit of 

using semantic components for searching. 

 

9.1. Findings and Contributions 

The main findings of the research relate to four original questions posed in the first 

chapter. 

1. Can useful document classes and semantic components be identified for 

particular domain-specific document collections?  

 
We showed that we were able to identify document classes and semantic 

components in three document collections from two different domains, medicine and 

public land management.  We described our use of two different methods for 

developing semantic component schemas.  The first method uses a bottom-up 

approach, analyzing documents sampled from the document collection to determine 

the types of documents and types of information present in the collection.  The second 

method uses a top-down, domain-centered approach, identifying existing document 

types, templates, or common document structures.  We also discussed using 
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knowledge about the domain, the users, and common work tasks to refine the 

schemas.  We discovered that the names used for document classes and semantic 

components can have a substantial effect on how users interpret the schema.  Factors 

that can facilitate schema development include homogeneity of a document collection 

and pre-existing structures, such as document types, templates, or instructions 

regarding document preparation.  Knowledge about the user community, such as 

common information needs and types of work tasks that motivate their searches, can 

also contribute to schema development.  

 
2. Can searchers express information needs using document classes and 

semantic components?  

We addressed this question by considering whether information needs in a 

particular domain can be expressed using the elements of semantic component 

schemas.  We developed semantic component schemas for two medical document 

collections by analyzing the types of information present in documents sampled from 

the collections.   We used an existing taxonomy of generic questions, derived from 

real questions posed by family practice physicians in the course of caring for patients, 

as a source of information needs.  We then mapped generic questions from the 

taxonomy categories to the two semantic component schemas.  We were able to map 

68% of the question categories to the semantic component schema for one document 

collection and 72% of the categories to the schema for the other collection.  For both 

collections, our mappings represented over 92% of the original 1396 questions, as 

indicated by the frequency data for each category.  We discussed the types of 
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questions we did not map to the collections using the schemas.  Only two generic 

questions, representing 0.4 % of the questions, were general “aboutness” questions 

(“What is condition x?” and “What is test x?”) that did not suggest a semantic 

component to which we could map.  Finally, we noted that the schemas themselves 

could be useful to searchers by profiling the types of information available from a 

given document collection.  Although a schema cannot indicate whether a particular 

question can be answered, it can indicate the kinds of questions that the collection is 

likely to be able to answer, or not be able to answer. 

Our searching study also demonstrated that searchers could use semantic 

components when searching for answers to questions posed by realistic scenarios.  The 

participants’ searching behavior, their questions and their practice searches in a 

training session, and their responses to survey questions indicated that they understood 

how and why to use semantic components for searching. 

 
3. How easily can semantic components be identified in documents?  

We compared manual semantic component indexing to manual keyword indexing 

in a study with sixteen participants who index documents for a Danish health portal, 

sundhed.dk.  Each participant was assigned twelve documents to index, six using 

keywords and six using semantic components.  Although not directly comparable 

because the units of measurement are different, we found that semantic component 

indexing had moderate accuracy (compared to a reference standard) and consistency 

(comparing the indexers among themselves) whereas keyword indexing had low 

accuracy and consistency.  When using keywords, indexers in our study were more 
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likely to agree, with each other and with the reference standard, on the exclusion of all 

terms from one or more of the controlled vocabularies than to agree on the inclusion of 

a particular term.  Semantic component indexing might be especially useful for 

documents about topics that are not well covered by existing controlled vocabularies. 

We also compared the time required to index documents using the two indexing 

techniques.  Semantic component indexing took slightly longer  than keyword 

indexing, approximately 7 and 6 minutes per document, respectively.  Both types of 

indexing were recorded on paper.  We also recorded the time to index 371 documents 

with semantic components for the searching study using a prototype indexing 

application.  The mean time was only 3.5 minutes per document. 

We used questionnaires to study indexer attitudes about semantic component 

indexing.  The responses regarding perceived difficulty and confidence in their 

choices were similar for the two types of indexing.  Slightly more indexers indicated a 

preference for performing keyword indexing but slightly more indexers thought 

semantic component indexing would be more useful for searching. 

   
4. Are semantic components useful for retrieving documents?  

We found that semantic components can enhance information retrieval by 

producing better document rankings.  Thirty physicians searched interactively for 

documents containing information to satisfy four realistic scenarios that required 

information to support decisions about patient care.  Each physician searched two 

scenarios with a baseline search system and searched two scenarios with an 

experimental search system that incorporated semantic components but was otherwise 
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identical to the baseline system.  The participants rated the relevance of the documents 

they found on a four point scale.  Because it was an interactive study, the searchers 

could issue multiple queries until they were satisfied with the information found or 

until they reached a point when they would quit searching in a real life setting.  We 

evaluated semantic component searching from two different perspectives, a system-

oriented perspective and a user-oriented perspective. 

For the system perspective, we evaluated query results using a reference standard 

of relevance judgments made by a physician researcher.  In one evaluation, we chose 

the query with the best results in each search session, where a session was the 

sequence of queries posed by one searcher for one scenario.  In most cases, the best 

query was the last query because searchers stopped searching after finding useful 

information.  When we compared search performance for the best queries from each 

session, the experimental system with semantic components performed significantly 

better than the baseline system.  We also compared the session-based performance of 

the two systems, evaluating query results using a new metric that discounts the value 

of relevant documents that are returned by later queries compared to earlier queries.  

Using the session-based discounting metric, the system with semantic components 

performed somewhat better than the baseline system but the difference was not 

statistically significant. 

For the user perspective, we evaluated query results using the individual searcher’s 

own relevance judgments.  In most sessions, a searcher found only one or two 

documents he judged highly relevant.  Sometimes the searchers found no highly 
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relevant or fairly relevant documents.  Using the searchers’ relevance judgments, the 

performance of the system with semantic components was slightly better than the 

baseline system, but the results were not statistically significant.   More search 

sessions were successful (the searcher found at least one document that he judged to 

be either highly relevant or fairly relevant) when using the experimental system than 

when using the baseline system.  However, search sessions lasted longer and were 

comprised of more queries with the experimental system than with the baseline 

system.  Dissatisfaction with search results, measured with a questionnaire following 

each search session, was slightly higher for the system with semantic components, but 

the difference was not statistically significant.  

In addition to the findings summarized above, we made the following 

contributions: 

• We provided a formal description of the semantic components model. 

• We described a prototype implementation of semantic component indexing 

software. 

• We analyzed semantic component and keyword indexing, evaluated candidate 

metrics, and proposed methods for evaluating each type of indexing. 

• We discovered a weakness in a metric used to assess consistency of unitizing 

(deciding the extent of text that should be annotated with a given category 

name) in content analysis. 

• We implemented semantic components in a prototype search system built on 

top of an existing search engine. 
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Our research also led to recognizing two important issues.  First is the need for a 

method of comparing search results from interactive search sessions consisting of 

multiple queries for a single information need.  We addressed this need by 

collaborating with Dr. Kalervo Jarvelin to develop a session-based metric for 

evaluating ranked results in multiple query sessions (sDCG) [44].  We used the new 

metric as one of our evaluation techniques in Chapter 8.  The second issue is 

evaluating new indexing techniques in large document collections.  If a document 

collection is too small, retrieval results may not be generalizable to larger collections.  

But manual indexing is too expensive to implement in large collections without 

knowing whether it will be useful.  We relied on predicting a large proportion of the 

documents that would compete with relevant documents for retrieval and then 

retrospectively analyzing our results to show that selective indexing did not bias our 

study results.  This method was effective because our search system reranked 

documents that would have been returned by the baseline system and because there 

were only a few relevant documents for each scenario.  However, a more robust and 

generalizable method for evaluating new types of indexing would be useful to support 

any future research on new indexing techniques. 

 

9.2. Implications and Limitations of the Research 

We have provided evidence of the feasibility and potential usefulness of semantic 

components for searching domain-specific libraries.  Our findings suggest that 

exploring the introduction of semantic components into operational search systems is 
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warranted.  However, this research has several limitations that affect how such 

explorations should be pursued. 

First, our work was limited to two domains, and most of the work was performed 

in a single domain, medicine.  Evidence of the usefulness of semantic components in 

other domains is necessary before committing human and economic resources to 

large-scale implementations of semantic components. 

Second, we have provided only preliminary evidence for the potential usefulness 

of semantic components.  Although our searching study demonstrated that semantic 

components can enhance search results, we conducted a single study, in a single 

document collection, with a single group of users, for only four scenarios.  Similarly, 

we studied indexing in a small sample of documents, from a single document 

collection, with a single group of indexers.  These limitations can be addressed with 

additional work, experimenting with semantic component searching and indexing with 

different user groups and different document collections.   

Third, there are variations on the semantic components model that we have not yet 

explored.  In our experiments, we allowed each document to belong to only one 

document class although the model does not preclude documents belonging to 

multiple classes.  In Chapter 4 we offered an example of a document indexed for the 

searching study that could usefully be indexed as belonging to two of the classes in 

our schema.  In addition, a given document might be useful for multiple tasks, by 

multiple user groups.  Different target audiences might have different perspectives and 

find different semantic components to be useful.  We conjecture that the semantic 



www.manaraa.com

 

339

component model might be more effective if schemas are tailored to the needs of 

different user groups (such as physicians versus patients using medical document 

collections) or to different types of tasks (such as tasks related to research versus 

clinical care).  Document collections that support multiple user groups might benefit 

from several semantic component schemas to reflect the interests, needs, and 

vocabularies of different user groups.  We have also considered, but have not 

implemented, variations on the semantic component model.  Three examples are: (1) a 

flat schema that has only semantic components and no document classes, (2) a mixed 

schema that has some document classes with associated semantic components and 

some classes for which class membership is the only additional information in the 

indexing, and (3) a schema that allows a semantic component to occur in multiple 

document classes and to be searched across all classes that contain the semantic 

component.   

Fourth, we have only begun to address the issue of scalability.  Even if additional 

research supports our conclusion that manual semantic component indexing is as 

feasible as manual keyword indexing, the resources required for manual indexing will 

prevent adoption of semantic component indexing in many settings.  Finding ways 

either to automate semantic component indexing or to improve its scalability in other 

ways may be a prerequisite to widespread use. 

Finally, our work was motivated by domain experts when they are searching 

domain-specific libraries for targeted information needs.  We have not investigated 

whether semantic components might also be applicable in other settings where some 
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of the same limitations to the effectiveness of current search algorithms apply.  For 

example, enterprise information systems might contain predictable document types 

and information types that are enterprise-specific instead of domain-specific.  

Semantic components that reflect those information types might be useful for 

searching.  Personal document collections might also benefit from semantic 

components using a user-specific schema. 

 

9.3. Future Work 

Each of the limitations mentioned in the preceding section invites future research 

to address the limitations of the current work.  In this section we briefly elaborate on 

three areas of future work that we find particularly compelling: (1) enhancing the 

scalability of semantic component indexing by allowing incremental user indexing, (2) 

extending the semantic components approach using variations on the current model, 

and (3) automating semantic component indexing to improve scalability. 

 

9.3.1. Incremental End-User Indexing 

We propose to explore end-user indexing for two reasons.  First, if much of the 

time and effort of indexing is attributable to reading and understanding the document, 

then selecting and labeling semantic component instances will take relatively little 

additional effort, assuming that the indexing tools are easy and relatively seamless to 

use.  Presumably the user of a document has already committed time to reading and 

understanding the document.  User indexing would facilitate re-use of documents by 
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the indexer and leverage effort already expended for the benefit of other members of a 

user community.  Second, the phenomenon of collaborative tagging suggests that 

(some) users will volunteer time and effort to categorize resources.  Already, 

document creators and users can assign descriptors, commonly referred to as tags, to 

describe a variety of electronic resources such as web pages,27 bibliographic 

references,28 and photo collections.29   Implementing semantic component indexing by 

end-users extends the notion of collaborative tagging to associating tags with 

subdocuments and not just whole documents. 

At first glance, delegating indexing to users may seem risky because user indexing 

is unpredictable and uncontrolled.  Yet, while one instance of indexing may be 

unreliable, the accumulation of multiple indexing instances is likely to converge 

toward a meaningful result and may, on average, be better than indexing produced by 

a single individual.  Studies of del.icio.us provide evidence that tagging by a critical 

mass of users results in convergence to stable tag usage patterns [158, 159].  

Furthermore, semantic components supplement traditional indexing and search, 

allowing more precise search specification.  Poor user indexing will inhibit the ability 

of semantic components to improve search precision, but is unlikely to degrade 

retrieval quality compared to traditional whole document search alone. 

                                                 
 
 
27 http://del.icio.us 
28 http://www.citeulike.org/ 
29 http://flickr.com 
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Incremental end-user indexing implies that a given document can have zero, one, 

or many instances of semantic component indexing.  An important piece of this work 

will be investigating how to implement a system that allows such flexibility.  Two 

important issues are (1) how to combine the data from multiple indexing instances in a 

ranking algorithm, when the instances can provide conflicting evidence about the 

relevance of a given document to a given query; and (2) how to implement a scalable 

system that can capture, store, and search multiple indexing instances per document. 

 

9.3.2. Variations on the Semantic Components Model 

We have already mentioned the possibility of allowing a document to be indexed 

as a member of multiple document classes and of allowing multiple indexing instances 

per document.  Here we reflect on varying the model in three ways: (1) loosening the 

hierarchy so that not every document class must have semantic components, (2) 

eliminating the hierarchical structure of document classes and semantic components, 

and (3) eliminating the pre-defined schema. 

In some document classes we identified semantic components whose potential 

value seemed obvious, such as the treatment and referral.  In other cases, we 

conjectured that most, if not all, the benefit of semantic components could be gained 

by directing the search at documents belonging to a particular class without specifying 

a particular semantic component.  For example, specifying that a search was for 

information about services or about a clinical unit might be sufficient additional 

information in a query to improve a search. 
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We also want to investigate a simpler version of the semantic components model, 

the flat schema.  In this version, all documents belong to the same universal class, so 

only semantic components are indexed.  Document classes provide some additional 

structure for representing semantic information in documents but they also add to 

complexity.  Feedback from both indexers and searchers suggests that they prefer the 

schema to be simple.  A flat schema might decrease the cognitive load of formulating 

queries and speed query entry into search forms.  Also, some information types might 

imply a particular document class, and thus eliminate the need for a separate document 

classification.  Other information types might appear in multiple document classes, 

such as referral information in sundhed.dk documents.  A flat schema will be easier to 

scale for large numbers of indexing instances.  We want to investigate whether a flat 

schema is more or less effective than a two level hierarchical schema, especially when 

trying to represent documents from multiple user perspectives.   

Developing a schema requires time and intellectual effort that must be repeated for 

each document collection.  Furthermore, successful use of semantic component 

indexing requires indexers and searchers to have a shared understanding of document 

class names and semantic component names.  We would like to test an open schema (a 

flat schema with no predefined semantic components) that would allow an indexer to 

associate a segment of text with any name deemed appropriate.  The open-schema 

approach resembles collaborative tagging except that a tag is bound to a whole 

document whereas a semantic component name is bound to a selected subdocument. 

The open schema retains the essence of the semantic component approach, which 
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extends whole document search by also searching subdocuments, where 

subdocuments are defined on a semantic, not structural, basis.  Such an approach 

would: 

• eliminate the “schema first” requirement 

• decrease the need for a pre-existing shared understanding of labels 

• provide increased flexibility for indexing more heterogeneous collections 

• allow document representations to evolve as a collection changes or as the 

state of knowledge in a domain changes  

However, an open schema also raises additional questions about how to combine 

information from multiple indexing instances in the presence of synonyms, word 

variants, or differing levels of specificity. 

 

9.3.3. Automated Semantic Component Indexing 

In Chapters 2 and 6 we discussed a variety of text analysis tasks that identify and 

manipulate subdocuments.  We anticipate that successful efforts to automate semantic 

component indexing will build on existing techniques developed to perform similar 

types of text analysis.  One promising approach is to draw on manual indexing 

examples to identify features of text in particular semantic components instances and 

then use existing technologies to identify the features in text.  Such technologies might 

range from using regular expressions, to identify phrases that signal the presence of 

particular types of information, to using state-of-the-art natural language processing 

(NLP) tools to identify syntactic and semantic clues.  NLP tools that are tuned to 
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particular domains, including medicine, already exist and could be useful.  Machine 

learning techniques could then exploit the identified features, learning to combine 

evidence from multiple features in optimal ways. 

It will not be easy to produce automated semantic component indexing that is 

equivalent to manual semantic component indexing.  On the other hand, replicating 

manual indexing may not be necessary to achieve substantial benefit.  We do not know 

what level of quality and indexing granularity is necessary to enhance conventional 

full text or keyword indexing.  Additional research that addresses the tradeoffs 

between automation and quality might reveal particular characteristics of semantic 

component indexing that provide benefit and yet can be automated more easily than 

trying to imitate manual indexing. 
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Appendix A.1 Keyword Indexing Data Collection Form 

Indexer Code ___________________  Document Number _________________ 

Indexing Technique:  Keyword 

Remember to click the Start button before you start this task. 

For this task we would like you to list both the concepts that you would like to index for each 
document and the keywords that you chose to represent the concepts in the index. 
 
Please list the concepts that you would like to index for this document: 

__________________________________  _________________________________ 
__________________________________  _________________________________ 
__________________________________  _________________________________ 
__________________________________  _________________________________ 
__________________________________  _________________________________ 
__________________________________  _________________________________ 
__________________________________  _________________________________ 
__________________________________  _________________________________ 
__________________________________  _________________________________ 
 
Please list the terms that you chose for this document and the source of the terms (the Almen 
thesaurus, ICPC, ICD-10, or free term) 
 

Source Term Source Term 
     
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
  

 

  
 

Remember to click the Finish button when you have completed this task. 
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Appendix A.2 Document Classification Form 

Indexer Code ___________________  Document Number _________________ 

Indexing Technique:  Semantic Components 

 

Remember to click the Start button before you start this task. 

Please place an X by the one document type you think best describes this document.  The table 
below describes each of the document types. 
 
____________   Clinical Problem:  Documents about a Clinical Problem or Condition 

____________   Procedure:  Documents about Diagnostic or Therapeutic Procedures 

____________   Services and Rights:  Documents about Government Payment for Healthcare 

 

Remember to click the Finish button when you have completed this task. 
 

Document Type Short Name Description 
Documents about a 
Clinical Problem or 
Condition 

Clinical 
problem 

Documents that are primarily about a particular clinical 
problem such as a disease, a symptom, or other clinical 
condition.  Examples: 
- a normal condition, such as pregnancy 
- an abnormal condition, such as malnutrition or injury 
- a disease, such as diabetes 
- a group of related diseases or problems, such as knee 
injuries (could include information about several specific 
injuries) 
- a symptom, such as chest pain 

Documents about 
Diagnostic or 
Therapeutic 
Procedures 

Procedure Documents that are primarily about a particular 
procedure, or possibly a group of related procedures, that 
are used to diagnose, treat or otherwise evaluate (e.g. 
determine the severity of) clinical problems.  The 
documents are intended to convey practical information, 
usually to patients or their family, about how the 
procedure is performed, what the purpose and outcome 
will be, what to expect, etc.  Examples:  
- surgical operations, such as coronary artery bypass 
surgery 
- radiologic examinations, such as colonoscopy 
- other types of procedures, such as a hearing exam. 

Documents about 
rights and services 
to patients 

Services and 
rights 

Documents that describe a service that is offered to 
patients in general or with specific indications.  The 
documents inform about possible services offered to all 
patients in Denmark, including the right to subsidised 
medication and “frit sygehusvalg”, and services offered 
to patients with specific indications, e.g. diabetes, 
dementia, obesity. 
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Appendix A.3 Semantic Components for the Clinical Problem Document Class 
 

 

Document Number _________________     Indexing Technique:  Semantic Components 
 
For the purposes of this experiment, please assume that this document is of the type:  Documents about a 
Clinical Problem or Condition regardless of which document type you chose.  Please determine which 
segments of text in the document, if any, contain information about each of the semantic components.  Use 
pens to mark the text and label each segment with the name of the semantic component.  Please be sure to 
label each marked segment.  Text associated with a semantic component may be discontinuous or overlap 
segments for other semantic components.  Some text in the document may not belong to any of these semantic 
components.  

Remember to click the Start button before you start this task. 
Remember to click the Finish button when you have completed this task. 

 
Documents about a Clinical Problem or Condition 

Semantic components 
 

Name Description 
How to diagnose or evaluate the problem. Evaluation 

Information about how to evaluate a patient who has, or might have, the clinical 
problem.  Examples: 
- how to diagnose the disease 
- how to determine its severity or clinical stage 
- the differential diagnosis of a symptom is (what diseases could cause this symptom) 
- what screening tests are appropriate 
- what tests should be performed in patients who have this problem. 
How to treat, manage or control the problem. Management 
Information about how to treat or manage a patient who has the clinical problem.  
Examples: 
- formal disease management guidelines  
- how to prevent complications 
- how to reduce the severity or impact of the disease on the patient 
- how to monitor progression of a disease 
- recommended diet, education, or counseling 
- what medications or procedures are appropriate 
- what doses of medications to give 
How to refer a patient with the problem to a specialist or special service. Referral 

 Information about how and when the family practitioner should refer a patient for 
specialist care.  Examples: 
- criteria for referral (such as severity of disease, presence of certain complications) 
- how to make a referral (what number to call, where to mail documents)  
- what tests to do before the referral 
- what records to send to the specialist or special clinic 
About the problem. About 

 General information about the condition, not necessarily for care of a particular patient.  
Examples: 
- natural history of a disease if not treated 
- the usual clinical course of patients with this problem 
- population statistics about how frequently the problem occurs 
- common co-occurring conditions or complications of the problem 
- etiology (causation) of the disease or condition. 
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